Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Cá Đuối Hồng
Biểu tượng cảm xúc
😃
☂️
🐱

Các dạng toán về cực trị có tham số đối với các hàm số đơn giản

Một số dạng toán

Dạng 1: Tìm điều kiện của tham số để hàm số bậc ba có điểm cực trị

Phương pháp:

- Bước 1: Tính y.

- Bước 2: Nêu điều kiện để hàm số bậc ba có điểm cực trị:

+ Hàm số có điểm cực trị y=0 có hai nghiệm phân biệt Δ>0.

+ Hàm số không có điểm cực trị y=0 vô nghiệm hoặc có nghiệm kép Δ0.

- Bước 3: Kết luận.

Hàm số bậc ba chỉ có thể có hai cực trị hoặc không có cực trị nào.


Dạng 2: Tìm điều kiện của tham số để hàm số bậc bốn trùng phương có điểm cực trị

Phương pháp:

- Bước 1: Tính y.

- Bước 2: Nêu điều kiện để hàm số có điểm cực trị:

+ Hàm số có 1 điểm cực trị nếu phương trình y=0 có nghiệm duy nhất.

+ Hàm số có 3 điểm cực trị nếu phương trình y=0 có ba nghiệm phân biệt.

- Bước 3: Kết luận.

Hàm số bậc bốn trùng phương chỉ có thể có 1 điểm cực trị hoặc có 3 điểm cực trị.

+ Trường hợp có 1 điểm cực trị thì đó là x=0.

+ Trường hợp có 3 điểm cực trị thì đó là x=0;x=b2a;x=b2a


Dạng 3: Tìm điều kiện của tham số để hàm số nhận điểm cho trước làm điểm cực trị

Phương pháp:

- Bước 1: Tính y,y.

- Bước 2: Nêu điều kiện để x=x0 là điểm cực trị của hàm số:

+ x=x0 là điểm cực đại nếu {f(x0)=0f(x0)<0

+ x=x0 là điểm cực tiểu nếu {f(x0)=0f(x0)>0

- Bước 3: Kết luận.


Dạng 4: Tìm điều kiện của tham số để đồ thị hàm số bậc ba có hai điểm cực trị thỏa mãn điều kiện cho trước

Phương pháp:

- Bước 1: Tính y.

- Bước 2: Nêu điều kiện để đồ thị hàm số có 2 điểm cực trị thỏa mãn điều kiện:

+ Đồ thị hàm số có 2 điểm cực trị nằm về hai phía trục tung

y=0 có hai nghiệm phân biệt trái dấuac<0

+ Đồ thị hàm số có 2 điểm cực trị nằm cùng phía so với trục tung

y=0 có hai nghiệm phân biệt cùng dấu{Δ>0P>0

+ Đồ thị hàm số có 2 điểm cực trị nằm về bên phải trục tung

y=0 có hai nghiệm phân biệt cùng dương {Δ>0S>0P>0

+ Đồ thị hàm số có 2 điểm cực trị nằm về bên trái trục tung

y=0 có hai nghiệm phân biệt cùng âm {Δ>0S<0P>0

+ Đồ thị hàm số có 2 điểm cực trị A(x1;y1),B(x2;y2) thỏa mãn đẳng thức liên hệ giữa x1,x2 thì ta biến đổi đẳng thức đã cho làm xuất hiện x1+x2,x1.x2 rồi sử dụng hệ thức Vi-et để thay {x1+x2=Sx1x2=P và tìm m.


Dạng 5: Tìm điều kiện của tham số để đồ thị hàm số bậc bốn trùng phương có ba điểm cực trị thỏa mãn điều kiện cho trước

Phương pháp:

- Bước 1: Tính y.

- Bước 2: Nêu điều kiện để đồ thị hàm số có ba điểm cực trị thỏa mãn điều kiện:

+ Ba điểm cực trị A,B,C trong đó A(0;c) lập thành một tam giác vuông (vuông cân)

ΔABC vuông tại AAB.AC=0 .

Khi đó:

y=4ax3+2bx=0[x=0x=±b2aA(0;c),B(b2a;cb24a),C(b2a;cb24a)

AB=(b2a;b24a),AC=(b2a;b24a)

AB.AC=0b2a+b416a2=08ab+b4=08a+b3=0b=23a

Đây là công thức tính nhanh trong bài toán trắc nghiệm.

+ Ba điểm cực trị A,B,C trong đó A(0;c) tạo thành tam giác đều AB=BC=CA.

+ Ba điểm cực trị A,B,C trong đó A(0;c) tạo thành tam giác có diện tích S0 cho trước

S0=12AH.BC với H là trung điểm của BC.

+ Ba điểm cực trị A,B,C trong đó A(0;c) tạo thành tam giác có diện tích S0 lớn nhất

Tìm max với {S_0} = \dfrac{1}{2}AH.BC,H là trung điểm của BC.

+ Ba điểm cực trị A,B,C trong đó A\left( {0;c} \right) tạo thành tam giác cân có góc ở đỉnh bằng \alpha cho trước

\Leftrightarrow \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \cos \alpha

+ Ba điểm cực trị A,B,C trong đó A\left( {0;c} \right) tạo thành tam giác có ba góc nhọn

\Leftrightarrow \alpha là góc ở đỉnh phải nhọn \Leftrightarrow \cos \alpha  = \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} > 0

- Bước 3: Kết luận.


Dạng 6: Viết phương trình đi qua các điểm cực trị của đồ thị hàm số bậc ba

Phương pháp:

- Bước 1: Tính y'.

- Bước 2: Lấy y chia y' ta được đa thức dư g\left( x \right) = mx + n.

- Bước 3: Kết luận: y = mx + n là đường thẳng cần tìm.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×