Bài 1. Số vô tỉ. Căn bậc hai số học trang 30 SGK Toán 7 chân trời sáng tạo
Lý thuyết Số vô tỉ. Căn bậc hai số học SGK Toán 7 Chân trời sáng tạo
Giải mục 1 trang 30, 31 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải mục 2 trang 31, 32 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải mục 3 trang 32 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải mục 4 trang 33 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 1 trang 33 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 2 trang 33 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 3 trang 33 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 4 trang 33 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 5 trang 34 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 6 trang 34 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 7 trang 34 SGK Toán 7 tập 1 - Chân trời sáng tạo Giải bài 8 trang 34 SGK Toán 7 tập 1 - Chân trời sáng tạoLý thuyết Số vô tỉ. Căn bậc hai số học SGK Toán 7 Chân trời sáng tạo
1. Biểu diễn thập phân của một số hữu tỉ
1. Biểu diễn thập phân của một số hữu tỉ
Ví dụ: Các số thập phân đã học như -4,3 ; 0,35;… còn được gọi là số thập phân hữu hạn.
Các số -0,2(7) ; 1,3(18) ; 5,(1) ;…. là những số thập phân vô hạn tuần hoàn với chu kì lần lượt là 7 ; 18 ; 1.
+ Mỗi số thập phân vô hạn tuần hoàn biểu diễn 1 số hữu tỉ. Chữ số hay cụm chữ số lặp đi lặp lại được gọi là chu kì.
Chú ý:
+ Mọi số hữu tỉ đều viết được dưới dạng số thập phân hữu hạn hoặc vô hạn tuần hoàn.
+ Nếu phân số tối giản với mẫu dương mà mẫu không có ước nguyên tố nào khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân hữu hạn.
Ví dụ: 380=324.5=3.5324.5.53=37510000=0,0375380=324.5=3.5324.5.53=37510000=0,0375
+ Nếu phân số tối giản với mẫu dương mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết được dưới dạng số thập phân vô hạn tuần hoàn.
Ví dụ: 730=0,2333....=0,2(3)730=0,2333....=0,2(3)
2. Số vô tỉ
Số vô tỉ là số viết được dưới dạng số thập phân vô hạn không tuần hoàn.
Ví dụ: π=3,1415926.....;e=2,71828.....;....π=3,1415926.....;e=2,71828.....;....là những sô vô tỉ
Tập hợp các số vô tỉ được kí hiệu là I
3. Căn bậc hai số học
Căn bậc hai số học của một số a không âm, kí hiệu √a√a, là số x không âm sao cho x2 = a.
Ví dụ: √121=11√121=11 vì 11 > 0 và 112 = 121
Chú ý: Cho a≥0a≥0. Khi đó:
+ Đẳng thức √a=b√a=b đúng nếu b≥0;b2=ab≥0;b2=a
+ (√a)2=a(√a)2=a
4. Tính căn bậc hai số học bằng máy tính cầm tay
Ví dụ: Tính √25√25
Ta bấm liên tiếp các nút:
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365