Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

Đề thi học kì 2 Toán 7 - Đề số 4 - Chân trời sáng tạo

I. TRẮC NGHIỆM ( 2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Cuộn nhanh đến câu

Đề bài

I. TRẮC NGHIỆM ( 2 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm.

Câu 1. Hai đại lượng x,y trong công thức nào tỉ lệ nghịch với nhau:

     A. y=5+x                    B. x=5y              C. y=5x                            D. x=5y

Câu 2. Trong các sự kiện, hiện tượng sau, đâu là biến cố chắc chắn?

     A. Mặt Trời quay quanh Trái Đất                                B. Khi gieo đồng xu thì được mặt ngửa  

     C. Có 9 cơn bão đổ bộ vào nước ta trong năm tới      D. Ngày mai, Mặt Trời mọc ở phía Đông

Câu 3. Giá trị của biểu thức: x32x2 tại x=2 là:

     A. 16                          B. 16                                  C. 0                                   D. 8    

Câu 4. Biểu thức nào sau đây không là đơn thức?

     A. 4x2y(2x)                                         B. 2x                                  C. 2xyx2 D. 2021                                  

Câu 5. Sắp xếp các hạng tử của đa thức P(x)=2x37x2+x44 theo lũy thừa giảm dần của biến ta được:

     A. P(x)=x4+2x37x24                 B. P(x)=7x2+2x3+x44

     C. P(x)=47x2+2x3+x4             D. P(x)=x42x37x24

Câu 6. Cho tam giác MNPNP=1cm,MP=7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là:

     A. 8cm                          B. 5cm                               C. 6cm                               D. 7cm  

Câu 7. Cho tam giác ABC có AB=AC. Trên các cạnh AB và AC lấy các điểm D,E sao cho AD=AE. Gọi K là giao điểm của BE và CD. Chọn câu sai.

     A. BE=CD                     B. BK=KC                      C. BD=CE                      D. DK=KC

Câu 8. Giao điểm của 3 đường trung trực của tam giác

A. cách đều 3 cạnh của tam giác.

B. được gọi là trực tâm của tam giác.

C. cách đều 3 đỉnh của tam giác.

D. cách đỉnh một đoạn bằng 23 độ dài đường trung tuyến đi qua đỉnh đó.

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1. (1 điểm) Tìm x biết:

a)       5x23=34                           b) (x214).(x+25)=0

Bài 2. (1,5 điểm) Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Biết số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 và hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây. Tính số cây trồng được của mỗi lớp

Bài 3. (1,5 điểm) Cho hai đa thức: f(x)=x5+x34xx5+3x+7g(x)=3x2x3+8x3x214.

a) Thu gọn và sắp xếp hai đa thức f(x)g(x) theo lũy thừa giảm dần của biến.

b) Tính f(x)+g(x) và tìm nghiệm của đa thức f(x)+g(x).    

Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A.

a) Tia phân giác của góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC tại E.

Chứng minh rằng ΔABD = ΔEBD.

b) So sánh AD và DC.

c) Tia ED cắt BA tại G. Gọi I là trung điểm GC. Chứng minh rằng B, D, I thẳng hàng.

Bài 5. (0,5 điểm) Cho x;y;z tỉ lệ thuận với 3;4;5. Tính giá trị của biểu thức

A=2024(xy)(yz)506.(x+y+z6)2 


Lời giải

I. Trắc nghiệm

1. B

2. D

3. A

4. C

5. A

6. D

7. D

8. C

Câu 1.

Phương pháp:

Vận dụng định nghĩa về đại lượng tỉ lệ nghịch.

Cách giải:

Ta có: x=5y là hai đại lượng tỉ lệ nghịch với nhau.

Chọn B.

Câu 2.

Phương pháp:                

Biến cố chắc chắn: Là biến cố biết trước được luôn xảy ra

Cách giải:

Đáp án A Biến cố không thể

Đáp án B Biến cố ngẫu nhiên

Đáp án C Biến cố ngẫu nhiên

Đáp án D Mặt Trời luôn mọc ở phía Đông nên sự kiện “Ngày mai, Mặt Trời mọc ở phía Đông." Luôn xảy ra nên là biến

cố chắc chắn.

Chọn D.

Câu 3.

Phương pháp:

Thay x=2 vào biểu thức x32x2 để tính.

Cách giải:

Thay x=2 vào biểu thức x32x2 ta có: (2)32.(2)2=(8)2.4=16

Chọn A.

Câu 4.

Phương pháp:

Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.

Cách giải:

Biểu thức: 2xyx2 không là một đơn thức.

Chọn C.

Câu 5.

Phương pháp:

Thu gọn đa thức bằng cách nhóm các hạng tử đồng dạng lại rồi thu gọn chúng. Sau đó sắp xếp theo lũy thừa giảm dần của biến.

Cách giải:

Sắp xếp theo lũy thừa giảm dần của biến: P(x)=x4+2x37x24

Chọn A.

Câu 6.

Phương pháp:

Sử dụng hệ quả của bất đẳng thức trong tam giác:

+ Tồn tại một tam giác có độ dài ba cạnh là a,b,c nếu |bc|<a<b+c.

+ Trong trường hợp xác định được a là số lớn nhất trong ba số a,b,c thì điều kiện tồn tại tam giác là a<b+c.

Cách giải:

Xét tam giác MNP, ta có:

|NPMP|<MN<NP+MP|17|<MN<1+76<MN<8

Vì độ dài cạnh MN là một số nguyên nên MN=7(cm)    

Chọn D.

Câu 7.

Phương pháp:

Dựa vào tính chất hai tam giác bằng nhau .

Cách giải:

 

Xét tam giác ABE và tam giác ADC có

+ AD = AE (GT)

 + Góc A chung

+ AB = AC (GT)

Suy ra ΔABE=ΔACD(cgc) ^ABE=^ACD;^ADC=^AEB (hai góc tương ứng) và BE = CD (hai cạnh tương ứng) nên A đúng.

Lại có \widehat {ADC} + \widehat {BDC} = {180^^\circ }; \widehat {AEB} + \widehat {BEC} = {180^^\circ } (hai góc kề bù) mà ^ADC=^AEB (cmt)

Suy ra ^BDC=^BEC.

Lại có AB=AC;AD=AE(gt) ABAD=ACAEBD=EC nên C đúng.

Xét tam giác KBD và tam giác KCE có

+ ^ABE=^ACD(cmt)

+ BD=EC(cmt)

^BDC=^BEC(cmt)

Nên ΔKBD=ΔKCE(gcg) KB=KC;KD=KE (hai cạnh tương ứng)  nên B đúng, D sai.

Câu 8.

Phương pháp

Tính chất đồng quy của 3 đường trung trực của tam giác

Lời giải

3 đường trung trực của tam giác đồng quy tại 1 điểm, điểm này cách đều 3 đỉnh của tam giác.

Chọn C.

II. PHẦN TỰ LUẬN (8,0 điểm)

Bài 1.

Phương pháp

a) Vận dụng định nghĩa hai phân số bằng nhau: Nếu ab=cd thì ad=bc.

b) Phương trình A(x).B(x)=0 , chia hai trường hợp để giải:

+ Trường hợp 1: A(x)=0

+ Trường hợp 2: B(x)=0

Cách giải:

a) 5x23=34

4.(5x2)=(3).320x8=920x=9+820x=1x=120

Vậy x=120

b) (x214).(x+25)=0

Trường hợp 1:

x214=0x2=14=(±12)2x=12;x=12

Trường hợp 2:

x+25=0x=25

Vậy x=12;x=12;x=25

Câu 2

Phương pháp:

Gọi số cây ba lớp 7A, 7B, 7C trồng được lần lượt là x,y,z (cây) (điều kiện: x,y,zN)

Áp dụng tính chất của dãy tỉ số bằng nhau để giải toán.

Cách giải:

Gọi số cây ba lớp 7A, 7B, 7C trồng được lần lượt là x,y,z (cây) (điều kiện: x,y,zN)

Vì số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 nên ta có: x3=y5=z8

Vì hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây nên ta có: 2x+4yz=108

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x3=y5=z8=2x6=4y20=z8=2x+4yz6+208=10818=6

Khi đó, x3=6x=18 (tmđk)

            y5=6y=30 (tmđk)

z8=6y=48 (tmđk)

Vậy số cây ba lớp trồng được là: Lớp 7A: 18 cây; lớp 7B: 30 cây, lớp 7C: 48 cây.

Bài 3.

Phương pháp:

a) Thu gọn đa thức bằng cách nhóm các hạng tử đồng dạng lại rồi thu gọn chúng. Sau đó sắp xếp theo lũy thừa giảm dần của biến.

b) Tính f(x)+g(x) ta nhóm các hạng tử đồng dạng lại rồi thu gọn chúng.

Tìm nghiệm của đa thức f(x)+g(x), ta giải phương trình f(x)+g(x)=0

Cách giải:

a) f(x)=x5+x34xx5+3x+7

    f(x)=(x5x5)+x3+(4x+3x)+7f(x)=x3x+7

g(x)=3x2x3+8x3x214g(x)=x3+(3x23x2)+8x14g(x)=x3+8x14

b) f(x)+g(x)=x3x+7x3+8x14

   =x3x+7x3+8x14=(x3x3)+(x+8x)+(714)=7x7

Ta có: f(x)+g(x)=0

7x7=07x=7x=1

Vậy x=1 là nghiệm của đa thức f(x)+g(x)

Bài 4.

Phương pháp:

Sử dụng tính chất tia phân giác, các phương pháp chứng minh hai tam giác vuông bằng nhau, mối quan hệ giữa cạnh và góc trong tam giác, tính chất của tam giác cân.

Cách giải:

 

a) Chứng minh rằng ΔABD = ΔEBD.

Xét hai tam giác vuông ΔABD và ΔEBD ta có:

A=E=900

AD = DE (vì BD là tia phân giác)

BD cạnh chung

Suy ra ΔABD = ΔEBD (cạnh huyền – cạnh góc vuông) AD = DE, BA = BE (cạnh tương ứng) (1)

b) So sánh AD và DC

Xét ΔDEC vuông tại E ta có: DC > DE

Lại có AD = DE (cmt)

DC > AD

c) Chứng minh rằng B, D, I thẳng hàng.

Xét ΔBGC có AC AB, GE AC

Suy ra D là trực tâm của ΔBGC.(2)

Xét hai tam giác vuông ΔADG và ΔEDC ta có:

ADG = EDC (đối đỉnh)

A=E=900

AD = DE (cm câu b))

Suy ra ΔADG = ΔEDC (cạnh gv – góc nhọn)

AG = EC (cạnh tương ứng)                                                                (3)

từ (1), (3) suy ra BA +AG  = BE + EC BG = BC

Vậy ΔBGC là tam giác cân tại B.                                                                               (4)

từ (2), (4) suy ra BD là đường trung tuyến của tam giác ΔBGC. Hay B, D, I thẳng hàng. (đpcm)

Bài 5.

Phương pháp:

- Bước 1: Từ đề bài suy ra tỉ lệ

- Bước 2: Đặt các tỉ lệ bằng k từ đó suy ra x,y,z theo k

- Bước 3: Thay vào đề bài và tính toán

- Bước 4: Kết luận

Cách giải:

x;y;z tỉ lệ thuận với 3;4;5 x3=y4=z5. Đặt x3=y4=z5=k{x=3ky=4kz=5k. Khi đó,A=2024(3k4k)(4k5k)506.(3k+4k+5k6)2

A=2024(k)(k)506.(2k)2

A=2024.k2506.4.k2

A=2024k22024k2

A=0

Vậy A=0.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Áp dụng kiến thức vào các trường hợp thực tế: Tầm quan trọng và cách thực hiện

Khái niệm về kỹ năng và tầm quan trọng trong đời sống và công việc, các loại kỹ năng mềm và kỹ năng cứng, các bước để phát triển kỹ năng, và cách áp dụng kỹ năng vào công việc.

Khái niệm về đường đi và yếu tố ảnh hưởng. Các loại đường đi phổ biến và công cụ đo đường đi. Ứng dụng của đường đi trong đời sống và công nghiệp.

Khái niệm về dạng cong và vai trò của nó trong hình học học hình. Loại dạng cong cơ bản như dạng cong đường thẳng và dạng cong đường tròn. Các tính chất hình học và toán học của dạng cong. Ứng dụng của dạng cong trong thực tế và phương pháp vẽ dạng cong bằng tay, công cụ đồ họa và phần mềm vẽ.

Khái niệm về Zigzag - Tính chất và ứng dụng của Zigzag trong thiết kế và công nghiệp

Khái niệm về Hằng số

Khái niệm về thay đổi

Khái niệm về chuyển động, định luật Newton và các loại chuyển động cơ bản.

Khái niệm cơ bản: Tầm quan trọng và ứng dụng trong học thuật và cuộc sống

Giới thiệu về bài toán liên quan, định nghĩa và các loại bài toán liên quan phổ biến. Bài học này giới thiệu về bài toán liên quan và các loại bài toán phổ biến. Bài toán liên quan là lĩnh vực quan trọng trong khoa học và công nghệ. Trong bài học này, chúng ta sẽ tìm hiểu về định nghĩa và sự quan trọng của bài toán liên quan. Các loại bài toán liên quan phổ biến bao gồm: tương quan, hồi quy, phân loại và gom cụm. Bài học này sẽ giúp bạn có cái nhìn tổng quan và hiểu rõ hơn về các loại bài toán liên quan.

Xem thêm...
×