Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo
Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 6
Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 7 Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 8 Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 9 Đề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 10 Đề thi giữa kì 2 Toán 6 - Đề số 5 - Chân trời sáng tạo Đề thi giữa kì 2 Toán 6 - Đề số 4 - Chân trời sáng tạo Đề thi giữa kì 2 Toán 6 - Đề số 3 - Chân trời sáng tạo Đề thi giữa kì 2 Toán 6 - Đề số 2 - Chân trời sáng tạo Đề thi giữa kì 2 Toán 6 - Đề số 1 - Chân trời sáng tạoĐề thi giữa kì 2 Toán 6 Chân trời sáng tạo - Đề số 6
Phần trắc nghiệm (3 điểm) Câu 1 (NB): Trong cách viết sau, cách viết nào cho ta phân số?
Trong cách viết sau, cách viết nào cho ta phân số?
Đáp án : C
Dựa vào khái niệm về phân số.
0,25−30,25−3 không phải phân số vì 0,25∉Z0,25∉Z.
5050 không phải phân số vì 0 nằm ở mẫu.
54,354,3 không phải phân số vì 4,3∉Z4,3∉Z.
25−325−3 là phân số vì 25;−3∈Z;−3≠025;−3∈Z;−3≠0.
Đáp án C.
Số đối của phân số 5−35−3 là:
Đáp án : A
Số đối của phân số abab là phân số −ab−ab.
Số đối của phân số 5−35−3 là 5353.
Đáp án A.
Phân số −615−615 bằng:
Đáp án : B
Sử dụng quy tắc rút gọn phân số.
Bước 1: Tìm ƯCLN của tử và mẫu sau khi đã bỏ dấu – (nếu có)
Bước 2: Chia cả tử và mẫu cho ước chung lớn nhất vừa tìm được, ta có phân số tối giản cần tìm
Ta có: −615=−6:315:3=−25−615=−6:315:3=−25.
Đáp án B.
Chọn kết quả đúng:
Đáp án : A
Dựa vào quy tắc so sánh phân số
So sánh 310310 với 3737: 310=3.710.7=2170310=3.710.7=2170; 37=3.107.10=307037=3.107.10=3070. Vì 21<3021<30 nên 2170<30702170<3070. Do đó 310<37310<37.
Nên A đúng, B sai.
815<915=35815<915=35 nên C sai.
−810<0<374−810<0<374 nên D sai.
Đáp án A.
Trong các hình sau, hình nào có trục đối xứng?
Đáp án : A
Dựa vào kiến thức về trục đối xứng.
Hình thoi có trục đối xứng.
Đáp án A.
Biển báo nào có tâm đối xứng?
Đáp án : B
Dựa vào kiến thức về tâm đối xứng.
Các biển có tâm đối xứng là biển hình 1, 3, 6.
Đáp án B.
Trong các biển báo giao thông sau, biển báo nào không có trục đối xứng?
Đáp án : D
Dựa vào kiến thức về trục đối xứng.
Các biển có trục đối xứng là biển 306, 405a, 401. Vậy biển 127 không có trục đối xứng.
Đáp án D.
Hình nào trong các hình sau vừa có trục đối xứng vừa có tâm đối xứng?
Đáp án : A
Dựa vào kiến thức về trục đối xứng và tâm đối xứng.
Hình vuông vừa có trục đối xứng vừa có tâm đối xứng.
Hình bình hành chỉ có tâm đối xứng không có trục đối xứng.
Hình thang cân chỉ có trục đối xứng, không có tâm đối xứng.
Hình tam giác cân chỉ có trục đối xứng, không có tâm đối xứng.
Đáp án A.
Cho hình 1, chọn khẳng định đúng:
Đáp án : B
Quan sát hình vẽ để xác định.
Quan sát hình vẽ ta thấy điểm A không thuộc m, điểm B, C thuộc m nên ta có:
A∉m;b∈m;c∈mA∉m;b∈m;c∈m. Vậy đáp án đúng là B.
Đáp án B.
Chọn câu đúng
Đáp án : C
Dựa vào kiến thức về ba điểm thẳng hàng.
Nếu ba điểm cùng thuộc một đường thẳng thì ba điểm đó thẳng hàng nên C đúng.
Đáp án C.
Cho hình vẽ bên. Hình biểu diễn điểm M là trung điểm của đoạn thẳng AB là:
Đáp án : D
Trung điểm của đoạn thẳng là điểm nằm giữa và cách đều hai đầu đoạn thẳng. Trung điểm của đoạn thẳng còn gọi là điểm chính giữa của đoạn thẳng.
Hình 1 và hình 3 biểu diễn điểm M là trung điểm của AB.
Đáp án D.
Trong hình vẽ. Chọn khẳng định đúng
Đáp án : D
Dựa vào kiến thức về đoạn thẳng.
Hình vẽ có 3 đoạn thẳng, đó là: AO, OB, AB.
Đáp án D.
1. Sắp xếp dãy phân số 12;14;16;1512;14;16;15 theo thứ tự từ tăng dần.
2. Tìm x, biết:
a) x−34=−23x−34=−23
b) −34:x+1=−23−34:x+1=−23
c) x−312=−54x−312=−54
1. Dựa vào quy tắc so sánh các phân số cùng tử số.
2. Sử dụng quy tắc tính với số thập phân để tìm x.
1. Vì 2 < 4 < 5 < 6 nên 12>14>15>1612>14>15>16
2.
a) x−34=−23x−34=−23
x=−23+34x=112
Vậy x=112.
b) −34:x+1=−23
−34:x=−23−1−34:x=−53x=−34:−53x=920
Vậy x=920.
c) x−312=−54
(x−3).4=−5.124(x−3)=−60x−3=−60:4x−3=−15x=−15+3x=−12
Vậy x=−12.
Thực hiện phép tính (Tính hợp lí nếu có thể)
a) 1011+311:3−17
b) −37+513+37
c) 53⋅725+53⋅2125−53⋅725
Dựa vào quy tắc tính với phân số.
a) 1011+311:3−17=1011+111−17=1111−17=1−17=67
b) −37+513+37=(−37+37)+513=0+513=513
c) 53⋅725+53⋅2125−53⋅725=53.(725+2125−725)=53.2125=75
Một cửa hàng trái cây nhập về 300 kg táo. Trong ngày chủ nhật cửa hàng bán được 23 số táo. Hỏi cửa hàng còn lại bao nhiêu kg táo?
Tính số táo cửa hàng bán được bằng tổng số táo . 23
Tính số táo còn lại bằng tổng số táo – số táo bán được.
Số táo cửa hàng bán được là:
300.23=200 (kg)
Số táo cửa hàng còn lại là:
300−200=100(kg)
Vậy số táo cửa hàng còn lại là 100kg.
1. Quan sát hình vẽ và trả lời câu hỏi sau:
a) Kể tên các điểm thuộc đường thẳng a;
b) Điểm nào thuộc cả hai đường thẳng a và b.
2. Vẽ đoạn thẳng AB = 7cm. C là điểm nằm giữa A và B, AC = 3cm. M là trung điểm của BC. Tính BM.
1. Quan sát hình vẽ để trả lời.
2. Sử dụng kiến thức về trung điểm của một đoạn thẳng.
1.
a) Điểm C, O thuộc đường thẳng a.
b) Điểm O thuộc đường thẳng a và b.
2.
Ta có C nằm giữa A và B nên AC+BC=AB
Hay BC=AB−AC=7−3=4cm.
Vì M là trung điểm BC nên BM=BC2=42=2(cm).
Vậy BM = 2cm.
So sánh hai phân số sau A=102022+1102023+1;B=102021+1102022+1.
Lấy 1 – A; 1 – B.
So sánh 1 – A và 1 – B từ đó ta so sánh được A và B.
+) 1−A=1−102022+1102023+1=102023+1102023+1−102022+1102023+1=102023−102022102023+1=102022.9102023+1
+) 1−B=1−102021+1102022+1=102022+1102022+1−102021+1102022+1=102022−102021102022+1=102021.9102022+1
+) Để so sánh 1−A và 1−B ta so sánh 10102023+1 và 1102022+1
1102022+1=10102023+10<10102023+1
Suy ra 1−B<1−A
Suy ra A<B.
Vậy A < B.
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365