Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn Toán 9 Chân trời sáng tạo

1. Cách giải hệ phương trình bằng phương pháp thế Bước 1. Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để nhận được một phương trình một ẩn. Bước 2. Giải phương trình một ẩn đó rồi suy ra nghiệm của hệ.

1. Cách giải hệ phương trình bằng phương pháp thế

Bước 1. Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để nhận được một phương trình một ẩn.

Bước 2. Giải phương trình một ẩn đó rồi suy ra nghiệm của hệ.

Ví dụ:

1. Hệ phương trình {2xy=3x+2y=4 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=2x3.

Thế vào phương trình thứ hai của hệ, ta được x+2(2x3)=4 hay 5x6=4, suy ra x=2.

Từ đó y=2.23=1.

Vậy hệ phương trình đã cho có nghiệm là (2;1).

2. Hệ phương trình {xy=22x2y=8 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có x=y2.

Thế vào phương trình thứ hai của hệ, ta được 2(y2)2y=8 hay 0y4=8.

Do không có giá trị vào của y thỏa mãn hệ thức 0y4=8 nên hệ phương trình vô nghiệm.

3. Hệ phương trình {x+y=23x3y=6 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=x2.

Thế vào phương trình thứ hai của hệ, ta được 3x3(x2)=6 hay 0x=0.

Ta thấy mọi giá trị của x đều thỏa mãn 0x=0.

Với giá trị tùy ý của x, giá trị tương ứng của y được tính bởi y=x2.

Vậy hệ phương trình có nghiệm là (x;x2) với xR tùy ý.

2. Cách giải hệ phương trình bằng phương pháp cộng đại số:

Bước 1. Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

Bước 2. Cộng hay trừ từng vế của hai phương trình trong hệ để được một phương trình một ẩn và giải phương trình đó.

Bước 3. Thế giá trị của ẩn tìm được ở Bước 2 vào một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Kết luận nghiệm của hệ.

Ví dụ:

1. Hệ phương trình {5x7y=95x3y=1 được giải bằng phương pháp cộng đại số như sau:

Trừ từng vế hai phương trình ta được (5x5x)+(7y+3y)=91 hay 4y=8, suy ra y=2.

Thế y=2 vào phương trình thứ hai ta được 5x7.(2)=9 hay 5x+14=9, suy ra x=1.

Vậy hệ phương trình đã cho có nghiệm duy nhất là (-1;-2).

2. Hệ phương trình {3x5y=26x+10y=4 được giải bằng phương pháp cộng đại số như sau:

Chia hai vế của phương trình thứ hai cho 2, ta được hệ {3x5y=23x+5y=2

Cộng từng vế hai phương trình của hệ mới ta có 0x+0y=0. Hệ này luôn thỏa mãn với các giá trị tùy ý của x và y.

Với giá trị tùy ý của x, giá trị của y được tính nhờ hệ thức 3x5y=2, suy ra y=35x25.

Vậy hệ phương trình đã cho cho nghiệm là (x;35x25) với xR.

3. Cách tìm nghiệm của hệ hai phương trình bằng máy tính cầm tay

Ta sử dụng loại máy tính cầm tay (MTCT) có chức năng này (có phím MODE/MENU). Dưới đây là hướng dẫn cụ thể với máy Fx-580VNX.

Ta viết phương trình cần giải dưới dạng {a1x+b1y=c1a2x+b2y+c2.

Ví dụ: Giải hệ {2x+y4=02x+y=0, ta viết nó dưới dạng {2x+y=42x+y=0.

Khi đó, ta có a1=2, b1=1, c1=4, a2=2, b2=1, c2=0. Lần lượt thực hiện các bước sau:

Bước 1. Vào chức năng hệ hai phương trình bậc nhất hai ẩn bằng cách nhấn MENU rồi bấm phím 9 để chọn tính năng Equation/Func (Ptrình/HệPtrình).

Bấm phím 1 để chọn Simul Equation (hệ phương trình).

Cuối cùng, bấm phím 2 để giải hệ hai phương trình bậc nhất

Bước 2. Ta nhập các hệ số a1,b1,c1,a2,b2,c2 bằng cách bấm

Bước 3. Sau khi nhập xong, ta bấm phím =, màn hình hiện x = 1; tiếp tục bấm =, màn hình hiện y = 3. Ta hiểu nghiệm của hệ phương trình là (-1;2).

Chú ý:

- Muốn xóa số vừa mới nhập thì bấm phím AC, muốn thay đổi số đã nhập ở vị trí nào đó thì di chuyển con trỏ đến vị trí đó rồi nhập số mới.

- Bấm phím ▲ hay ▼ để chuyển hiển thị các giá trị của x và y trong kết quả.

- Nếu máy báo Infinite Solution thì hệ phương trình đã cho có vô số nghiệm.

Nếu máy báo No Solution thì hệ phương trình đã cho vô nghiệm.

4. Giải bài toán bằng cách lập hệ phương trình

Các bước giải bài toán bằng cách lập hệ phương trình:

Bước 1. Lập hệ phương trình:

- Chọn hai ẩn biểu thị hai đại lượng chưa biết và đặt điều kiện thích hợp cho các ẩn số;

- Biểu diễn các đại lượng liên quan theo các ẩn và các đại lượng đã biết;

- Lập hệ hai phương trình bậc nhất hai ẩn biểu thị mối quan hệ giữa các đại lượng.

Bước 2. Giải hệ phương trình nhận được.

Bước 3. Kiểm tra nghiệm tìm được ở bước 2 có thỏa mãn điều kiện của ẩn hay không, rồi trả lời bài toán.

Ví dụ 1: Giải bài toán bằng cách lập hệ phương trình

Hai xe cùng khởi hành một lúc ở hai tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ; nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Lời giải:

Gọi x là vận tốc của xe đi nhanh, y là vận tốc của xe đi chậm ( x,y>0;x>y và x, y tính bằng km/h).

Sau 1 giờ hai xe gặp nhau, nên ta có phương trình:

x + y = 60

Sau 3 giờ mỗi xe đi được 3x; 3y ( km) và gặp nhau, nên ta có phương trình:

3x – 3y = 60.

Vậy, ta có hệ phương trình:

{x+y=603x3y=60{3x+3y=1803x3y=60

{x=40y=20

(x=40;y=20 thỏa mãn các điều kiện đã nêu)

Vậy xe đi nhanh có vận tốc 40(km/h), xe đi chậm có vận tốc 20(km/h).

Ví dụ 2: Giải bài toán bằng cách lập hệ phương trình

Tìm một số có hai chữ số, biết rằng tổng của hai chữ số ấy bằng 12 và khi thay đổi thứ tự hai chữ số thì được một số lớn hơn số cũ là 18.

Lời giải:

Gọi x, y là các chữ số hàng chục và hàng đơn vị của số đã cho (xN,0<x9 ,0x9)

Khi đó hai số có dạng ¯xy=10x+y¯yx=10y+x.

Ta có hệ phương trình:

{x+y=1210y+x18=10x+y

{x+y=12xy=2

{x=5y=7

Vậy số cần tìm là 57.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Khái niệm về khả năng chịu tải trong kỹ thuật cơ khí

Khái niệm nghiên cứu tính chất vật liệu

Khái niệm về bức xạ nhiệt, cách hoạt động và tác dụng của nó trong các ứng dụng năng lượng. Bức xạ nhiệt là quá trình truyền tải năng lượng từ nguồn nhiệt cao đến nguồn nhiệt thấp bằng sóng điện từ như hồng ngoại, tia cực tím và tia X. Nó không cần môi trường truyền tải và có thể xảy ra trong không gian. Bức xạ nhiệt được sử dụng rộng rãi trong năng lượng, y tế và chế tạo. Có ba dạng chính của bức xạ nhiệt là bức xạ hồng ngoại, tia cực tím và tia X. Bức xạ hồng ngoại thâm nhập vào vật liệu và được sử dụng trong hệ thống camera an ninh, điều khiển từ xa và cảm biến nhiệt. Bức xạ tia cực tím được sử dụng trong điều trị bệnh da, khử trùng và sản xuất vitamin D. Bức xạ tia X có khả năng thâm nhập vào vật liệu dày và được sử dụng trong y tế, kiểm tra an ninh, công nghiệp và nghiên cứu khoa học. Bức xạ nhiệt có tác dụng quan trọng trong chuyển đổi năng lượng, chuẩn đoán và điều trị bệnh, cũng như tạo ra nhiệt độ cao và kích thích các phản ứng hóa học trong chế tạo. Các loại bức xạ nhiệt bao gồm bức xạ hồng ngoại, bức xạ tia cực tím và bức xạ tia X. Bức xạ hồng ngoại được sử dụng trong sản xuất, y tế và an ninh. Bức xạ tia cực tím có tác động mạnh đến sức khỏe con người và cũng có ứng dụng trong sản xuất và y tế. Máy phát điện bằng bức xạ nhiệt hoạt động bằng cách thu thập nhiệt từ nguồn nhiệt, chuyển đổi nhiệt thành năng lượng cơ học và chuyển đổi năng lượng cơ học thành điện. Có ba loại máy phát điện bằng bức xạ nhiệt gồm máy phát đi

Khởi đầu của ngành khoa học vật liệu

Khái niệm động cơ khí nén

Khái niệm về công suất cơ khí

Khái niệm về bộ nén: định nghĩa và vai trò trong kỹ thuật điện tử. Các loại nén và tỷ lệ nén. Cấu tạo và nguyên lý hoạt động của bộ nén. Ứng dụng của bộ nén trong lưu trữ, truyền tải dữ liệu và nén file âm thanh, video và hình ảnh. Sự quan trọng của việc chọn, sử dụng, bảo dưỡng và bảo quản bộ nén.

Khái niệm về bộ làm mát - Định nghĩa và vai trò trong hệ thống làm mát của động cơ

Khái niệm về bộ mở rộng và các loại bộ mở rộng phổ biến

Khái niệm về nguyên lý Boyle-Mariotte

Xem thêm...
×