Trò chuyện
Tắt thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Đại Sảnh Kết Giao
Chat Tiếng Anh
Trao đổi học tập
Trò chuyện linh tinh
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Giải hệ hai phương trình bậc nhất hai ẩn Toán 9 Cánh diều

1. Giải hệ phương trình bằng phương pháp thế Bước 1: (Thế) Từ một phương trình của hệ đã cho, ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình một ẩn. Bước 2. (Giải phương trình một ẩn) Giải phương trình (một ẩn) nhận được ở Bước 1 để tìm giá trị của ẩn đó. Bước 3. (Tìm ẩn còn lại và kết luận) Thay giá trị vừa tìm được của ẩn đó ở Bước 2 vào biểu thức biểu diễn một ẩn theo ẩn kia ở Bước 1 để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của

1. Giải hệ phương trình bằng phương pháp thế

Bước 1: (Thế) Từ một phương trình của hệ đã cho, ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình một ẩn.

Bước 2. (Giải phương trình một ẩn) Giải phương trình (một ẩn) nhận được ở Bước 1 để tìm giá trị của ẩn đó.

Bước 3. (Tìm ẩn còn lại và kết luận) Thay giá trị vừa tìm được của ẩn đó ở Bước 2 vào biểu thức biểu diễn một ẩn theo ẩn kia ở Bước 1 để tìm giá trị của ẩn còn lại. Từ đó, ta tìm được nghiệm của hệ phương trình đã cho.

Ví dụ:

1. Hệ phương trình {2xy=3x+2y=4 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=2x3.

Thế vào phương trình thứ hai của hệ, ta được x+2(2x3)=4

Giải phương trình x+2(2x3)=4, ta được:

x+2(2x3)=4

5x6=4

x=2.

Thay x=2 vào phương trình y=2x3, ta có: y=2.23=1.

Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=(2;1).

2. Hệ phương trình {xy=22x2y=8 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có x=y2.

Thế vào phương trình thứ hai của hệ, ta được

2(y2)2y=8

0y4=8.

Do không có giá trị vào của y thỏa mãn hệ thức 0y4=8 nên hệ phương trình vô nghiệm.

3. Hệ phương trình {x+y=23x3y=6 được giải bằng phương pháp thế như sau:

Từ phương trình thứ nhất của hệ, ta có y=x2.

Thế vào phương trình thứ hai của hệ, ta được

3x3(x2)=6

0x=0.

Ta thấy mọi giá trị của x đều thỏa mãn 0x=0.

Với giá trị tùy ý của x, giá trị tương ứng của y được tính bởi y=x2.

Vậy hệ phương trình có nghiệm là (x;x2) với xR tùy ý.

Chú ý: Hệ phương trình bậc nhất hai ẩn có thể có nghiệm duy nhất hoặc vô nghiệm hoặc vô số nghiệm.

2. Giải hệ phương trình bằng phương pháp cộng đại số:

Bước 1. (Làm cho hai hệ số của một ẩn nào đó bằng nhau hoặc đối nhau) Nhân hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

Bước 2. (Đưa phương trình về một ẩn) Cộng (hay trừ) từng vế hai phương trình của hệ phương trình nhận được ở Bước 1 để nhận được một phương trình mà hệ số của một trong hai ẩn bằng 0, tức là nhận được phương trình một ẩn. Giải phương trình một ẩn đó.

Bước 3. (Tìm ẩn còn lại và kết luận) Thay giá trị vừa tìm được ở Bước 2 vào một trong hai phương trình của hệ đã cho để tìm giá trị của ẩn còn lại. Từ đó ta tìm được nghiệm của hệ phương trình đã cho.

Ví dụ:

1. Hệ phương trình {5x7y=95x3y=1 được giải bằng phương pháp cộng đại số như sau:

Trừ từng vế hai phương trình ta được (5x5x)+(7y+3y)=91 hay 4y=8, suy ra y=2.

Thế y=2 vào phương trình thứ hai ta được 5x7.(2)=9 hay 5x+14=9, suy ra x=1.

Vậy hệ phương trình đã cho có nghiệm duy nhất là (-1;-2).

2. Hệ phương trình {3x5y=26x+10y=4 được giải bằng phương pháp cộng đại số như sau:

Chia hai vế của phương trình thứ hai cho 2, ta được hệ {3x5y=23x+5y=2

Cộng từng vế hai phương trình của hệ mới ta có 0x+0y=0. Hệ này luôn thỏa mãn với các giá trị tùy ý của x và y.

Với giá trị tùy ý của x, giá trị của y được tính nhờ hệ thức 3x5y=2, suy ra y=35x25.

Vậy hệ phương trình đã cho cho nghiệm là (x;35x25) với xR.

Lưu ý: Các bước giải bài toán bằng cách lập phương trình tương tự như các bước giải bài toán bằng cách lập hệ phương trình.

Ví dụ 1: Giải bài toán bằng cách lập hệ phương trình

Hai xe cùng khởi hành một lúc ở hai tỉnh A và tỉnh B cách nhau 60km. Nếu đi ngược chiều thì gặp nhau sau 1 giờ; nếu đi cùng chiều thì xe đi nhanh sẽ đuổi kịp xe kia sau 3 giờ. Tìm vận tốc mỗi xe.

Lời giải:

Gọi x là vận tốc của xe đi nhanh, y là vận tốc của xe đi chậm ( x,y>0;x>y và x, y tính bằng km/h).

Sau 1 giờ hai xe gặp nhau, nên ta có phương trình:

x + y = 60

Sau 3 giờ mỗi xe đi được 3x; 3y ( km) và gặp nhau, nên ta có phương trình:

3x – 3y = 60.

Vậy, ta có hệ phương trình:

{x+y=603x3y=60{3x+3y=1803x3y=60

{x=40y=20

(x=40;y=20 thỏa mãn các điều kiện đã nêu)

Vậy xe đi nhanh có vận tốc 40(km/h), xe đi chậm có vận tốc 20(km/h).

Ví dụ 2: Giải bài toán bằng cách lập hệ phương trình

Tìm một số có hai chữ số, biết rằng tổng của hai chữ số ấy bằng 12 và khi thay đổi thứ tự hai chữ số thì được một số lớn hơn số cũ là 18.

Lời giải:

Gọi x, y là các chữ số hàng chục và hàng đơn vị của số đã cho (xN,0<x9 ,0x9)

Khi đó hai số có dạng ¯xy=10x+y¯yx=10y+x.

Ta có hệ phương trình:

{x+y=1210y+x18=10x+y

{x+y=12xy=2

{x=5y=7

Vậy số cần tìm là 57.

3. Sử dụng máy tính cầm tay để tìm nghiệm của hệ hai phương trình bậc nhất hai ẩn

Ta sử dụng loại máy tính cầm tay (MTCT) có chức năng này (có phím MODE/MENU). Dưới đây là hướng dẫn cụ thể với máy Fx-580VNX.

Ta viết phương trình cần giải dưới dạng {a1x+b1y=c1a2x+b2y+c2.

Ví dụ: Giải hệ {2x+y4=02x+y=0, ta viết nó dưới dạng {2x+y=42x+y=0.

Khi đó, ta có a1=2, b1=1, c1=4, a2=2, b2=1, c2=0. Lần lượt thực hiện các bước sau:

Bước 1. Vào chức năng hệ hai phương trình bậc nhất hai ẩn bằng cách nhấn MENU rồi bấm phím 9 để chọn tính năng Equation/Func (Ptrình/HệPtrình).

Bấm phím 1 để chọn Simul Equation (hệ phương trình).

Cuối cùng, bấm phím 2 để giải hệ hai phương trình bậc nhất

Bước 2. Ta nhập các hệ số a1,b1,c1,a2,b2,c2 bằng cách bấm

Bước 3. Sau khi nhập xong, ta bấm phím =, màn hình hiện x = 1; tiếp tục bấm =, màn hình hiện y = 3. Ta hiểu nghiệm của hệ phương trình là (-1;2).

Chú ý:

- Muốn xóa số vừa mới nhập thì bấm phím AC, muốn thay đổi số đã nhập ở vị trí nào đó thì di chuyển con trỏ đến vị trí đó rồi nhập số mới.

- Bấm phím ▲ hay ▼ để chuyển hiển thị các giá trị của x và y trong kết quả.

- Nếu máy báo Infinite Solution thì hệ phương trình đã cho có vô số nghiệm.

Nếu máy báo No Solution thì hệ phương trình đã cho vô nghiệm.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Ưu tiên chất lượng vải và các phương pháp kiểm tra trong sản xuất - Tầm quan trọng của đảm bảo chất lượng vải, các tiêu chuẩn đánh giá và phương pháp kiểm tra như độ bền, độ mịn, độ co giãn, độ đàn hồi, độ bóng và màu sắc trong quá trình sản xuất vải.

Lịch sử phát triển ngành thời trang và dệt may - Quy trình sản xuất - Chất liệu - Thị trường hiện nay

Giới thiệu về Future of Clo: Định nghĩa và vai trò trong ngành thời trang. Công nghệ và vật liệu sử dụng. Sự phát triển và triển vọng trong tương lai. Tác động đến môi trường và xã hội.

Khái niệm về Công nghệ mới

Sustainable Practices: Definition and Role in Environmental Protection. The concept of Sustainable Practices ensures a balance between economy, society, and environment, protecting natural resources and ecosystems. It promotes efficient resource use, waste reduction, pollution prevention, and encourages innovation and new solutions. It positively impacts human health, creates employment opportunities, and fosters sustainable development in communities. Changing mindset and actions, raising awareness and commitment, and implementing new methods and processes are necessary to achieve Sustainable Practices. Principles of Sustainable Practices encompass sustainable resource use, waste minimization, and biodiversity conservation. Using resources responsibly and ensuring their replenishment and maintenance for the future is crucial. Minimizing waste through recycling, reusing, and reducing is important for environmental sustainability. Biodiversity conservation is at the core of sustainable principles, ensuring the diversity of animal and plant species and natural habitats. Sustainable Practices in production involve using renewable energy sources, recycled materials, and waste reduction. Transitioning to renewable energy reduces dependence on unsustainable sources like coal and oil, benefits the environment, and brings economic advantages. Utilizing recycled materials minimizes natural resource extraction and waste, protecting the environment. Waste reduction is a significant measure for sustainability, focusing on recycling, reusing, and safe waste disposal. Implementing Sustainable Practices in daily life includes energy conservation, minimizing plastic use, and choosing sustainable products. Conserving energy through simple actions like turning off lights when not in use, using energy-efficient devices, and utilizing natural energy sources contributes to sustainability. Reducing plastic use involves using reusable bags, avoiding single-use plastic bottles, and opting for products without plastic packaging. Selecting sustainable products, such as organic and recycled materials, and avoiding environmentally harmful products, contributes to environmental protection and builds a sustainable future.

Eco-friendly products là phương tiện hiệu quả để bảo vệ môi trường, giảm thiểu ô nhiễm và tác động tiêu cực đến sức khỏe con người. Chúng được sản xuất từ các nguyên liệu tái chế, giảm thiểu khí thải và chất thải, và đảm bảo an toàn cho sức khỏe con người. Sử dụng các sản phẩm eco-friendly giúp giảm tác động đến tài nguyên tự nhiên và bảo vệ môi trường, đồng thời tạo ra một môi trường sống lành mạnh cho con người.

Định nghĩa và tiêu chí sản phẩm đạo đức. Tiêu chuẩn sản xuất và lợi ích của sản phẩm đạo đức. Ví dụ về sản phẩm đạo đức trong đời sống và công nghiệp.

Khái niệm về nguyên liệu tự nhiên

Các Vật Liệu Tái Tạo: Định Nghĩa, Ưu Điểm, Hạn Chế và Ứng Dụng Khái niệm các vật liệu tái tạo, định nghĩa và vai trò của chúng trong bảo vệ môi trường. Những ưu điểm như khả năng tái chế, giảm ô nhiễm môi trường và sự bền vững. Tuy nhiên, chúng cũng có hạn chế như chi phí sản xuất cao hơn và tác động tiêu cực đến sức khỏe con người. Các vật liệu tái tạo được sử dụng rộng rãi trong đời sống hàng ngày và công nghiệp, giúp giảm lượng rác thải và tiết kiệm tài nguyên tự nhiên.

Khái niệm về Smart Clo - Quần áo thông minh và vai trò trong cuộc sống hiện đại

Xem thêm...
×