Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Bất phương trình bậc nhất một ẩn Toán 9 Cánh diều

1. Mở đầu về bất phương trình bậc nhất một ẩn Một bất phương trình với ẩn x có dạng (hoặc ) trong đó vế trái và vế phải là hai biểu thức của cùng một biến x.

1. Mở đầu về bất phương trình bậc nhất một ẩn

Một bất phương trình với ẩn x có dạng A(x)>B(x) (hoặc A(x)<B(x),A(x)B(x),A(x)B(x)) trong đó vế trái A(x) và vế phải B(x) là hai biểu thức của cùng một biến x.

Nghiệm của bất phương trình

Khi thay giá trị x=a vào bất phương trình với ẩn x, ta được một khẳng định đúng thì số a (hay giá trị x=a) gọi là nghiệm của bất phương trình đó.

Giải bất phương trình là tìm tất cả các nghiệm của bất phương trình đó.

Ví dụ:

Số -2 là nghiệm của bất phương trình 2x10<02.(2)10=410=14<0.

Số 6 không là nghiệm của bất phương trình 2x10<02.610=1210=2>0.

2. Bất phương trình bậc nhất một ẩn

Định nghĩa

Bất phương trình dạng ax+b>0 (hoặc ax+b<0,ax+b0,ax+b0) với a, b là hai số đã cho và a0 được gọi là bất phương trình bậc nhất một ẩn.

Ví dụ: 3x+160; 3x>0 là các bất phương trình bậc nhất một ẩn x.

x240 không phải là một bất phương trình bậc nhất một ẩn x vì x24 là một đa thức bậc hai.

3x2y<2 không phải là một bất phương trình bậc nhất một ẩn vì đa thức 3x2y là đa thức với hai biến x và y.

Cách giải

Bất phương trình bậc nhất một ẩn ax+b>0 (với a>0) được giải như sau:

ax+b>0ax>bx>ba.

Vậy nghiệm của bất phương trình đã cho là x>ba.

Bất phương trình bậc nhất một ẩn ax+b>0 (với a<0) được giải như sau:

ax+b>0ax>bx<ba.

Vậy nghiệm của bất phương trình đã cho là x<ba.

Chú ý: Các bất phương trình ax+b<0, ax+b0, ax+b0 với a, b là hai số đã cho và a0 được giải bằng cách tương tự.

Ví dụ: Giải bất phương trình 2x4>0

Lời giải: Ta có:

2x4>02x>0+42x>4x<4.(12)x<2

Vậy nghiệm của bất phương trình là x<2.

Chú ý: Ta cũng có thể giải được các bất phương trình dạng ax+b>cx+d;ax+b<cx+d;ax+bcx+d;ax+bcx+d bằng cách đưa bất phương trình về dạng ax+b<0, ax+b>0, ax+b0, ax+b0.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×