Trò chuyện
Tắt thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Voi Hồng
Đại Sảnh Kết Giao
Chat Tiếng Anh
Trao đổi học tập
Trò chuyện linh tinh
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Tính đơn điệu và cực trị của hàm số Toán 12 Chân trời sáng tạo

Bài 1. Tính đơn điệu và cực trị của hàm số 1. Tính đơn điệu của hàm số

1. Tính đơn điệu của hàm số

Định lý 1

Cho hàm số y = f(x) có đạo hàm trên K

  • Nếu f’(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.
  • Nếu f’(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.

Chú ý:

a) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x)  0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) đồng biến trên K.

b) Nếu hàm số y = f(x) có đạo hàm trên K, f’(x)  0 với mọi x thuộc K và f’(x) = 0 chỉ tại một số hữa hạn điểm của K thì hàm số f(x) nghịch biến trên K.

c) Nếu f’(x) = 0 với mọi x thuộc K thì hàm số không đổi trên K.

2. Cực trị của hàm số

Khái niệm cực trị của hàm số

Cho hàm số y = f(x) liên tục trên tập KRKR, trong đó K là một khoảng, đoạn hoặc nửa khoảng và x0K,x1Kx0K,x1K

  • x0x0 được gọi là một điểm cực đại của hàm số đã cho nếu tồn tại một khoảng (a;b) chứa điểm x0x0 sao cho (a;b) K và f(x)<f(x0)f(x)<f(x0) với mọi x(a;b)x(a;b)xx0xx0. Khi đó, f(x0)f(x0) được gọi là giá trị cực đại của hàm số đã cho, kí hiệu là fCĐ
  • x1 được gọi là một điểm cực tiểu của hàm số đã cho nếu tồn tại một khoảng (a;b) chứa điểm x0 sao cho (c;d) K và f(x)>f(x1) với mọi x(c;d)xx1. Khi đó, f(x1) được gọi là giá trị cực đại của hàm số đã cho, kí hiệu là fCT
  • Điểm cực đại và điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại và giá trị cực tiểu được gọi chung là giá trị cực trị (hay cực trị)

Định lý 

Giả sử hàm số y = f(x) liên tục trên khoảng (a;b) chứa điểm x0 và có đạo hàm trên các khoảng (a;x0)(x0;b). Khi đó:

a) Nếu f’(x) < 0 với mọi x(a;x0) và f’(x) > 0 với mọi x(x0;b) thì hàm số f(x) đạt cực tiểu tại điểm x0

b) Nếu f’(x) > 0 với mọi x(a;x0) và f’(x) < 0 với mọi x(x0;b) thì hàm số f(x) đạt cực tiểu tại điểm x0

 


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×