Bài 1. Vectơ và các phép toán trong không gian - Toán 12 Chân trời sáng tạo
Lý thuyết Vecto và các phép toán trong không gian Toán 12 Chân trời sáng tạo
Giải mục 1 trang 41,42,43 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải mục 2 trang 43,44,45 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải mục 3 trang 46,47,48 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải mục 4 trang 48,49,50 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 1 trang 50 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 2 trang 50 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 3 trang 50 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 4 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 5 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 6 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 7 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo Giải bài tập 8 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạoLý thuyết Vecto và các phép toán trong không gian Toán 12 Chân trời sáng tạo
Bài 1. Vecto và các phép toán trong không gian 1. Vecto trong không gian
1. Vecto trong không gian
|
2. Tổng và hiệu của hai vecto
a) Tổng của hai vecto
Trong không gian, cho hai vecto →a⃗a và →b⃗b. Lấy một điểm A bất kì và các điểm B,C sao cho →AB=→a,→BC=→b−−→AB=→a,−−→BC=→b. Khi đó, vecto →AC−−→AC được gọi là tổng của hai vecto →a⃗a và →b⃗b, kí hiệu là →a+→b→a+→b Phép lấy tổng của hai vecto được gọi là phép cộng vecto
|
b) Hiệu của hai vecto
Trong không gian, cho hai vecto →a và →b. Hiệu của hai vecto →a và →b là tổng của hai vecto →a và vecto đối của →b, kí hiệu là →a−→b Phép lấy hiệu của hai vecto được gọi là phép trừ vecto Với ba điểm O, A, B trong không gian, ta có: →OA−→OB=→BA (Quy tắc hiệu) |
3. Tích của một số với một vecto
Trong không gian, tích của một số thực k≠0 với một vecto →a≠→0 là một vecto, kí hiệu là k→a, được xác định như sau: - Cùng hướng với vecto →a nếu k > 0; ngược hướng với vecto →a nếu k < 0 - Có độ dài bằng |k|.|→a| Phép lấy tích của một số với một vecto được gọi là phép nhân một số với một vecto |
4. Tích vô hướng của hai vecto
a) Góc giữa hai vecto trong không gian
Trong không gian, cho hai vecto →a và →b khác →0. Lấy một điểm O bất kỳ và gọi A, B là hai điểm sao cho →OA=→a,→OB=→b. Khi đó, góc ^AOB(0∘≤^AOB≤180∘) được gọi là góc giữa hai vecto →a và →b, kí hiệu (→a,→b) |
b) Tích vô hướng của hai vecto
Trong không gian, cho hai vecto →a và →b khác →0. Tích vô hướng của hai vecto →a và →b là một số, kí hiệu là →a⋅→b, được xác định bởi công thức →a⋅→b=|→a|⋅|→b|⋅cos(→a,→b) |
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365