Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

Đề số 7 – Đề kiểm tra học kì 2 – Toán 9

Đáp án và lời giải chi tiết Đề số 7 - Đề kiểm tra học kì 2 (Đề thi học kì 2) - Toán 9

Cuộn nhanh đến câu

Đề bài

I. TRẮC NGHIỆM (1 điểm) Chọn chữ cái đúng trước câu trả lời đúng.

Câu 1: Cặp số \(\left( { - 1;2} \right)\) là nghiệm của hệ phương trình nào sau đây?

A. \(\left\{ \begin{array}{l}x + 5y = 9\\6x + 2y =  - 2\end{array} \right.\)                B. \(\left\{ \begin{array}{l} - 2x + y = 7\\x - \dfrac{3}{4}y = 3\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x + y = 1\\ - 2x + y = 4\end{array} \right.\)                    D. \(\left\{ \begin{array}{l}2x - 2y = 0\\x + y = 3\end{array} \right.\)

Câu 2: Điều kiện của m để phương trình \({x^2} - 2mx + {m^2} - 4 = 0\) có hai nghiệm \({x_1} = 0,\,\,{x_2} > 0\) là:

A. \(m =  - 2\)                          B. \(m = 2\)

C. \(m =  \pm 2\)                                 D. \(m = 16\)

Câu 3: Cho đường tròn \(\left( {O;R} \right)\) đường kính AB, dây\(AC = R\). Khi đó số đo độ của cung nhỏ BC là:

A. \({60^o}\)                           B. \({120^o}\)  

C. \({90^o}\)                           D. \({150^o}\)

Câu 4: Độ dài của một đường tròn là \(10\pi \) (cm). Diện tích của hình tròn đó là:

A. \(10\pi \;\left( {c{m^2}} \right)\)                           B. \(100\pi \;\left( {c{m^2}} \right)\)

C. \(50\pi \;\left( {c{m^2}} \right)\)                           D. \(25\pi \;\left( {c{m^2}} \right)\)

II. TỰ LUẬN (9 điểm)

Câu 1 (2,5 điểm):

1) Giải hệ phương trình sau: \(\left\{ \begin{array}{l}\dfrac{2}{{x - 2}} + \dfrac{1}{{y + 1}} = 3\\\dfrac{3}{{x - 2}} - \dfrac{2}{{y + 1}} = 8\end{array} \right.\)

2) Trong mặt phẳng tọa độ Oxy cho Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(\left( d \right):y = 2mx - 2m + 1\)  

a) Với\(m =  - 1\), hãy tìm tọa độ giao điểm của \(\left( P \right)\) và \(\left( d \right)\).

b) Tìm m để \(\left( P \right)\) và \(\left( d \right)\) cắt nhau tại 2 điểm phân biệt \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\) sao cho tổng các tung độ của hai giao điểm bằng 2.

Câu 2 (2,5 điểm): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.

Một đội xe theo kế hoạch chở hết 120 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 5 tấn. Hỏi theo kế hoạch đội xe chở hết số hàng đó trong bao nhiêu ngày?

Câu 3 (3,5 điểm): Cho đường tròn \(\left( O \right)\) có dây cung CD cố định. Gọi M là điểm nằm chính giữa cung nhỏ CD. Đường kính MN của đường tròn \(\left( O \right)\) cắt dây CD tại I. Lấy điểm E bất kỳ trên cung lớn CD (E khác C,D,N); ME cắt CD tại K. Các đường thẳng NECD cắt nhau tại P.

a) Chứng minh rằng: Tứ giác IKEN nội tiếp.

b) Chứng minh: \(EI.MN = NK.ME\).

c) NK cắt MP tại Q. Chứng minh: IK là phân giác của \(\angle EIQ\).  

d) Từ C vẽ đường thẳng vuông góc với EN cắt đường thẳng DE tại H. Chứng minh khi E di động trên cung lớn CD (E khác C, D, N) thì H luôn chạy trên một đường cố định.

Câu 4 (0,5 điểm): Cho \(a,\;b,\;c > 0\), chứng minh rằng:

\(\dfrac{a}{{a + b}} + \dfrac{b}{{b + c}} + \dfrac{c}{{c + a}}\)\( < \sqrt {\dfrac{a}{{b + c}}}  + \sqrt {\dfrac{b}{{c + a}}}  + \sqrt {\dfrac{c}{{a + b}}} \)


Đ/a TN


1A

2B

3B

4D

Câu 1:

Phương pháp:

Thay \(\left( {x;y} \right) = \left( { - 1;2} \right)\) vào từng hệ phương trình để kiểm tra, nếu thỏa mãn thì là nghiệm và ngược lại.

Cách giải:

\(\left\{ \begin{array}{l} - 1 + 5.2 = 9\\6\left( { - 1} \right) + 2.2 =  - 2\end{array} \right.\)

Vậy \(\left( { - 1;2} \right)\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 5y = 9\\6x + 2y =  - 2\end{array} \right.\)

Chọn A

Câu 2:

Phương pháp:

Từ dữ kiện đề bài sử dụng công thức nghiệm thu gọn kết hợp định lý Vi-ét để tìm m

Cách giải:

\({x^2} - 2mx + {m^2} - 4 = 0\)

\(\Delta ' = {m^2} - {m^2} + 4 = 4 > 0\) với mọi \(m \Rightarrow \) phương trình có hai nghiệm phân biệt với mọi \(m.\)

Ta có \({x_1} = 0,\,\,{x_2} > 0\) và theo định lý Vi-ét ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{x_1} + {x_2} = 2m > 0\\{x_1}{x_2} = {m^2} - 4 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\{m^2} = 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 0\\\left[ \begin{array}{l}m = 2\\m =  - 2\end{array} \right.\end{array} \right. \Leftrightarrow m = 2\end{array}\)

Vậy với \(m = 2\) thỏa mãn yêu cầu đề bài.

Chọn B

Câu 3:

Phương pháp:

Sử dụng tính chất, dấu hiệu nhận biết tam giác đều để tính \(\angle BOC\) từ đó suy ra số đo cung nhỏ BC

Cách giải:

 

Cho đường tròn \(\left( {O;R} \right)\) đường kính AB \( \Rightarrow OA = OB = R\)

Mặt khác dây\(AC = R\)\( \Rightarrow OA = OC = AC = R\)

\( \Rightarrow \Delta OAC\) đều \( \Rightarrow \angle AOC = {60^o}\)

\( \Rightarrow \angle BOC = {180^o} - \angle AOC\)\( = {120^o}\) (hai góc kề bù)

\( \Rightarrow \) sđ  (số đo góc ở tâm bằng số đo cung bị chắn)

Chọn B

Câu 4:

Phương pháp:

Từ công thức tính chu vi hình tròn rút ra R, từ đó tính diện tích hình tròn đó.

Cách giải:

Độ dài của một đường tròn chính là chu vi hình tròn \( \Rightarrow 2\pi .R = 10\pi  \Rightarrow R = 5\;\;\left( {cm} \right)\)

Diện tích hình tròn đó là: \(\pi {R^2} = 25\pi \;\;\left( {c{m^2}} \right).\)

Chọn D


LG câu 1

 

 


LG câu 2


LG câu 3


LG câu 4


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×