Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

SGK Toán 11 - Chân trời sáng tạo

Bài 1. Dãy số Toán 11 Chân trời sáng tạo

Lý thuyết Dãy số - SGK Toán 11 Chân trời sáng tạo
1. Định nghĩa dãy số
Giải mục 1 trang 45, 46 SGK Toán 11 tập 1 - Chân trời sáng tạo
(begin{array}{l}u:{mathbb{N}^*} to mathbb{R}\ & ,,,n mapsto uleft( n right) = {n^2}end{array}) Tính (uleft( 1 right);uleft( 2 right);uleft( {50} right);uleft( {100} right)).
Giải mục 2 trang 46, 47 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho các dãy số \(\left( {{a_n}} \right),\left( {{b_n}} \right),\left( {{c_n}} \right),\left( {{d_n}} \right)\) được xác định như sau.
Giải mục 3 trang 48 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho hai dãy số \(\left( {{a_n}} \right)\) và \(\left( {{b_n}} \right)\) được xác định như sau: \({a_n} = 3n + 1;\) \({b_n} = - 5n\).
Giải mục 4 trang 49 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{n}\). So sánh các số hạng của dãy số với 0 và 1.
Bài 1 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Tìm ({u_2},{u_3}) và dự đoán công thức số hạng tổng quát ({u_n}) của dãy số:
Bài 2 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + ... + \frac{1}{{n\left( {n + 1} \right)}}\).
Bài 3 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Xét tính tăng, giảm của dãy số \(\left( {{y_n}} \right)\) với \({y_n} = \sqrt {n + 1} - \sqrt n \).
Bài 4 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Xét tính bị chặn của các dãy số sau:
Bài 5 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n - 1}}{{n + 1}}\). Chứng minh \(\left( {{u_n}} \right)\) là dãy số tăng và bị chặn.
Bài 6 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{na + 2}}{{n + 1}}\). Tìm giá trị của \(a\) để:
Bài 7 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Trên lưới ô vuông, mỗi ô cạnh 1 đơn vị, người ta vẽ 8 hình vuông và tô màu khác nhau như Hình 3. Tìm dãy số biểu diễn độ dài cạnh của 8 hình vuông đỏ từ nhỏ đến lớn. Có nhận xét gì về dãy số trên?

Bài xem nhiều

Lý thuyết Dãy số - SGK Toán 11 Chân trời sáng tạo
1. Định nghĩa dãy số
Bài 4 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Xét tính bị chặn của các dãy số sau:
Giải mục 2 trang 46, 47 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho các dãy số \(\left( {{a_n}} \right),\left( {{b_n}} \right),\left( {{c_n}} \right),\left( {{d_n}} \right)\) được xác định như sau.
Bài 6 trang 50 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{na + 2}}{{n + 1}}\). Tìm giá trị của \(a\) để:
Giải mục 4 trang 49 SGK Toán 11 tập 1 - Chân trời sáng tạo
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{n}\). So sánh các số hạng của dãy số với 0 và 1.
×