SGK Toán 12 - Kết nối tri thức
Chương 2. Vectơ và hệ trục tọa độ trong không gian
Lý thuyết Biểu thức tọa độ của các phép toán vecto Toán 12 Kết nối tri thức
1. Biểu thức tọa độ của phép cộng hai vecto, phép trừ hai vecto, phép nhân một số với một vecto
Lý thuyết Hệ trục tọa độ trong không gian Toán 12 Kết nối tri thức
1. Hệ trục tọa độ trong không gian
Lý thuyết Vecto trong không gian Toán 12 Kết nối tri thức
1. Vecto trong không gian
Giải bài tập 2.25 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Cho tứ diện ABCD. Lấy G là trọng tâm của tam giác BCD. Khẳng định nào sau đây là sai?
A. \(\overrightarrow {BG} + \overrightarrow {CG} + \overrightarrow {DG} = \overrightarrow 0 \).
B. \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \).
C. \(\overrightarrow {BC} + \overrightarrow {BD} = 3\overrightarrow {BG} \).
D. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).
Giải mục 1 trang 67, 68 SGK Toán 12 tập 1 - Kết nối tri thức
Biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ
Giải mục 1 trang 60, 61 SGK Toán 12 tập 1 - Kết nối tri thức
Hệ trục tọa độ trong không gian
Giải mục 1 trang 46,47,48 SGK Toán 12 tập 1 - Kết nối tri thức
Vectơ trong không gian
Giải bài tập 2.26 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’. Lấy M là trung điểm của đoạn thẳng CC’. Vectơ \(\overrightarrow {AM} \) bằng
A. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA'} \).
C. \(\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AD} + \frac{1}{2}\overrightarrow {AA'} \).
D. \(\frac{1}{2}\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \).
Giải mục 2 trang 69, 70 SGK Toán 12 tập 1 - Kết nối tri thức
Biểu thức tọa độ của tích vô hướng
Giải mục 2 trang 61, 62, 63 SGK Toán 12 tập 1 - Kết nối tri thức
Tọa độ của điểm, tọa độ của vectơ trong không gian
Giải mục 2 trang 49, 50, 51 SGK Toán 12 tập 1 - Kết nối tri thức
Tổng và hiệu của hai vectơ trong không gian
Giải bài tập 2.27 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’. Khẳng định nào dưới đây là sai?
A. \(\overrightarrow {AB} + \overrightarrow {CC'} = \overrightarrow {AB'} \).
B. \(\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} = \overrightarrow {AC'} \).
C. \(\overrightarrow {AD} + \overrightarrow {BB'} = \overrightarrow {AD'} \).
D. \(\overrightarrow {AB} + \overrightarrow {CC'} = \overrightarrow {AC'} \).
Giải mục 3 trang 70, 71 SGK Toán 12 tập 1 - Kết nối tri thức
Vận dụng tọa độ của vectơ trong một số bài toán có liên quan đến thực tiễn
Giải bài tập 2.13 trang 64 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho ba vectơ (overrightarrow a ), (overrightarrow b ), (overrightarrow c ) đều khác (overrightarrow 0 ) và có giá đôi một vuông góc. Những mệnh đề nào sau đây là đúng?
a) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt song song với giá của các vectơ (overrightarrow a ), (overrightarrow b ), (overrightarrow c ).
b) Có thể lập được một hệ tọa độ Oxyz có các trục tọa độ lần lượt trùng với giá của các vectơ (overrightarrow a ), (over
Giải mục 3 trang 52, 53, 54 SGK Toán 12 tập 1 - Kết nối tri thức
Tích của một số với một vectơ trong không gian
Giải bài tập 2.20 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho ba vectơ \(\overrightarrow a = \left( {3;1;2} \right)\), \(\overrightarrow b = \left( { - 3;0;4} \right)\) và \(\overrightarrow c = \left( {6; - 1;0} \right)\)
a) Tìm tọa độ của các vectơ \(\overrightarrow a + \overrightarrow b + \overrightarrow c \) và \(2\overrightarrow a - 3\overrightarrow b - 5\overrightarrow c \).
b) Tính các tích vô hướng \(\overrightarrow a .\left( { - \overrightarrow b } \right)\) và \(\left( {2\overrightarrow a } \right).\overrightar
Giải bài tập 2.28 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Cho tứ diện đều ABCD có độ dài cạnh bằng a, gọi M là trung điểm của đoạn thẳng CD. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AM} \) bằng
A. \(\frac{{{a^2}}}{4}\).
B. \(\frac{{{a^2}}}{2}\).
C. \(\frac{{{a^2}}}{3}\).
D. \({a^2}\).
Giải bài tập 2.14 trang 64 SGK Toán 12 tập 1 - Kết nối tri thức
Hãy mô tả hệ tọa độ Oxyz trong căn phòng ở Hình 2.44 sao cho gốc O trùng với góc trên của căn phòng, khung tranh nằm trong mặt phẳng (Oxy) và mặt trần nhà trùng với mặt phẳng (Oxz).
Giải mục 4 trang 54, 55, 56 SGK Toán 12 tập 1 - Kết nối tri thức
Tích vô hướng của hai vectơ trong không gian
Giải bài tập 2.21 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho ba điểm \(M\left( { - 4;3;3} \right),N\left( {4; - 4;2} \right)\) và \(P\left( {3;6; - 1} \right)\).
a) Tìm tọa độ của các vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.
b) Tìm tọa độ của vectơ \(\overrightarrow {NM} + \overrightarrow {NP} \), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.
c) Tính chu vi của hình bình hành MNPQ.
Giải bài tập 2.29 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {1; - 2;2} \right),\overrightarrow b = \left( { - 2;0;3} \right)\). Khẳng định nào dưới đây là sai?
A. \(\overrightarrow a + \overrightarrow b = \left( { - 1; - 2;5} \right)\).
B. \(\overrightarrow a - \overrightarrow b = \left( {3; - 2; - 1} \right)\).
C. \(3\overrightarrow a = \left( {3; - 2;2} \right)\).
D. \(2\overrightarrow a + \overrightarrow b = \left( {0; - 4;7} \right)\).
Giải bài tập 2.15 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, xác định tọa độ của vectơ \(\overrightarrow {AB} \) trong mỗi trường hợp sau:
a) \(A\left( {0;0;0} \right)\) và \(B\left( {4;2; - 5} \right)\);
b) \(A\left( {1; - 3;7} \right)\) và \(B\left( {1; - 3;7} \right)\);
c) \(A\left( {5;4;9} \right)\) và \(B\left( { - 5;7;2} \right)\).
Giải bài tập 2.12 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức
Cho tứ diện ABCD. Chứng minh rằng:
a) (overrightarrow {AB} .overrightarrow {CD} = overrightarrow {AC} .overrightarrow {CD} + overrightarrow {BC} .overrightarrow {DC} );
b) (overrightarrow {AB} .overrightarrow {CD} + overrightarrow {AC} .overrightarrow {DB} + overrightarrow {AD} .overrightarrow {BC} = 0).
Giải bài tập 2.22 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho tam giác ABC có \(A\left( {1;0;1} \right),B\left( {0; - 3;1} \right)\) và \(C\left( {4; - 1;4} \right)\).
a) Tìm tọa độ trọng tâm của tam giác ABC.
b) Chứng minh rằng \(\widehat {BAC} = {90^0}\).
c) Tính \(\widehat {ABC}\).
Giải bài tập 2.30 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hình bình hành ABCD có \(A\left( { - 1;0;3} \right),B\left( {2;1; - 1} \right)\) và \(C\left( {3;2;2} \right)\). Tọa độ của điểm D là
A. \(\left( {2; - 1;0} \right)\).
B. \(\left( {0; - 1; - 6} \right)\).
C. \(\left( {0;1;6} \right)\).
D. \(\left( { - 2;1;0} \right)\).
Giải bài tập 2.16 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, xác định tọa độ của điểm A trong mỗi trường hợp sau:
a) A trùng với gốc tọa độ;
b) A nằm trên tia Ox và \(OA = 2\);
c) A nằm trên tia đối của tia Oy và \(OA = 3\).
Giải bài tập 2.11 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian, cho hai vectơ (overrightarrow a ) và (overrightarrow b ) có cùng độ dài bằng 1. Biết rằng góc giữa hai vectơ đó là ({45^0}), hãy tính:
a) (overrightarrow a .overrightarrow b );
b) (left( {overrightarrow a + 3overrightarrow b } right).left( {overrightarrow a - 2overrightarrow b } right))
c) ({left( {overrightarrow a + overrightarrow b } right)^2}).
Giải bài tập 2.23 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức
Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục tọa độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét (H.2.51). Hãy tìm tọa độ của điểm treo đèn.
Giải bài tập 2.31 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho \(A\left( {1;0; - 1} \right),B\left( {0; - 1;2} \right)\) và \(G\left( {2;1;0} \right)\). Biết tam giác ABC có trọng tâm G. Tọa độ của điểm C là
A. \(\left( {5;4; - 1} \right)\).
B. \(\left( { - 5; - 4;1} \right)\).
C. \(\left( {1;2; - 1} \right)\).
D. \(\left( { - 1; - 2;1} \right)\)
Giải bài tập 2.17 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hình hộp chữ nhật ABCD.A’B’C’D’ có đỉnh A trùng với gốc O và các đỉnh D, B, A’ có tọa độ lần lượt là (2; 0; 0), (0; 4; 0), (0; 0; 3) (H.2.45). Xác định tọa độ của các đỉnh còn lại của hình hộp chữ nhật.
Giải bài tập 2.10 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có độ dài mỗi cạnh đáy bằng 1 và độ dài mỗi cạnh bên bằng 2. Hãy tính góc giữa các cặp vectơ sau đây và tính tích vô hướng của mỗi cặp vectơ đó:
a) \(\overrightarrow {AA'} \) và \(\overrightarrow {C'C;} \)
b) \(\overrightarrow {AA'} \) và \(\overrightarrow {BC;} \)
c) \(\overrightarrow {AC} \) và \(\overrightarrow {B'A'} \).
Giải bài tập 2.24 trang 72 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian, xét hệ tọa độ Oxyz có gốc O trùng với vị trí của một giàn khoan trên biển, mặt phẳng (Oxy) trùng với mặt biển (được coi là phẳng) với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời (H.2.52). Đơn vị đo trong không gian Oxyz lấy theo kilômét. Một chiếc ra đa đặt tại giàn khoan có phạm vi theo dõi là 30km. Hỏi ra đa có thể phát hiện được một chiếc tàu thám hiểm có tọa độ là (25; 15; -10) đối với hệ tọa độ nói trên hay không? Hãy giải thíc
Giải bài tập 2.32 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {2;1; - 3} \right),\overrightarrow b = \left( { - 2; - 1;2} \right)\). Tích vô hướng \(\overrightarrow a .\overrightarrow b \) bằng
A. \( - 2\).
B. \( - 11\).
C. 11.
D. 2.
Giải bài tập 2.19 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
Trong vận dụng 2, hãy giải thích vì sao tại mỗi thời điểm chiếc máy bay di chuyển trên đường băng thì tọa độ của nó luôn có dạng (x; y; 0) với x, y là hai số thực nào đó.
Giải bài tập 2.9 trang 59 SGK Toán 12 tập 1 - Kết nối tri thức
Ba sợi dây không giãn với khối lượng không đáng kể được buộc chung một đầu và được kéo căng về ba hướng khác nhau (H.2.31). Nếu các lực kéo làm cho ba sợi dây ở trạng thái đứng yên thì khi đó ba sợi dây nằm trên cùng một mặt phẳng. Hãy giải thích vì sao.
Giải bài tập 2.33 trang 73 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho \(\overrightarrow a = \left( {2;1; - 2} \right),\overrightarrow b = \left( {0; - 1;1} \right)\). Góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng
A. \({60^0}\).
B. \({135^0}\).
C. \({120^0}\).
D. \({45^0}\).
Giải bài tập 2.18 trang 65 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ có (Aleft( {1;1; - 1} right),Bleft( {0;3;0} right),C'left( {2; - 3;6} right)).
a) Xác định tọa độ của điểm C.
b) Xác định các tọa độ đỉnh còn lại của hình hộp.
Giải bài tập 2.8 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Trong Luyện tập 8, ta đã biết trọng tâm của tứ diện ABCD là một điểm I thỏa mãn (overrightarrow {AI} = 3overrightarrow {IG} ), ở đó G là trọng tâm của tam giác BCD. Áp dụng tính chất trên để tính khoảng cách từ trọng tâm của một khối rubik (đồng chất) hình tứ diện đều đến một mặt của nó, biết rằng chiều cao của khối rubik là 8cm (H.2.30).
Giải bài tập 2.34 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 2;2;2} \right),\overrightarrow b = \left( {1; - 1; - 2} \right)\). Côsin của góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \) bằng
A. \(\frac{{ - 2\sqrt 2 }}{3}\).
B. \(\frac{{2\sqrt 2 }}{3}\).
C. \(\frac{{\sqrt 2 }}{3}\).
D. \(\frac{{ - \sqrt 2 }}{3}\).
Giải bài tập 2.7 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình chóp S.ABC. Trên cạnh SA, lấy điểm M sao cho \(SM = 2AM\). Trên cạnh BC, lấy điểm N sao cho \(CN = 2BN\). Chứng minh rằng \(\overrightarrow {MN} = \frac{1}{3}\left( {\overrightarrow {SA} + \overrightarrow {BC} } \right) + \overrightarrow {AB} \).
Giải bài tập 2.35 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Giải bài tập 2.6 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \).
Giải bài tập 2.36 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Cho tứ diện ABCD, lấy hai điểm M, N thỏa mãn (overrightarrow {MB} + 2overrightarrow {MA} = overrightarrow 0 ) và (overrightarrow {NC} = 2overrightarrow {DN} ). Hãy biểu diễn (overrightarrow {MN} ) theo (overrightarrow {AD} ) và (overrightarrow {BC} ).
Giải bài tập 2.5 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình lăng trụ tam giác ABC.A’B’C’ có \(\overrightarrow {AA'} = \overrightarrow a ,\overrightarrow {AB} = \overrightarrow b \) và \(\overrightarrow {AC} = \overrightarrow c \). Hãy biểu diễn các vectơ sau qua các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \):
a) \(\overrightarrow {AB'} \);
b) \(\overrightarrow {B'C} \);
c) \(\overrightarrow {BC'} \).
Giải bài tập 2.37 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’, gọi G là trọng tâm của tam giác BDA’.
a) Biểu diễn \(\overrightarrow {AG} \) theo \(\overrightarrow {AB} ,\overrightarrow {AD} \) và \(\overrightarrow {AA'} \).
b) Từ câu a, hãy chứng tỏ ba điểm A, G và C’ thẳng hàng.
Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \);
c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)
Giải bài tập 2.40 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right),\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của vectơ \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \).
b) Tính độ dài vectơ \(\overrightarrow u \).
c) Tính \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right)\).
Giải bài tập 2.3 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Một chiếc bàn cân đối hình chữ nhật được đặt trên mặt sàn nằm ngang, mặt bàn song song với mặt sàn và bốn chân bàn vuông góc với mặt sàn như Hình 2.29. Trọng lực tác dụng lên bàn (biểu thị bởi vectơ (overrightarrow a )) phân tán đều qua bốn chân bàn và gây nên các phản lực từ mặt sàn lên các chân bàn (biểu thị bởi các vectơ (overrightarrow b ,overrightarrow c ,overrightarrow d ,overrightarrow e )).
Giải bài tập 2.39 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho hình hộp OABC.O’A’B’C’ và các điểm \(A\left( {2;3;1} \right),C\left( { - 1;2;3} \right)\) và \(O'\left( {1; - 2;2} \right)\). Tìm tọa độ các đỉnh còn lại của hình hộp.
Giải bài tập 2.2 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có (AB = 2,AD = 3) và (AA' = 4). Tính độ dài của các vectơ (overrightarrow {BB'} ,overrightarrow {BD} ) và (overrightarrow {BD'} ).
Giải bài tập 2.38 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho các điểm \(A\left( {2; - 1;3} \right),B\left( {1;1; - 1} \right)\) và \(C\left( { - 1;0;2} \right)\).
a) Tìm tọa độ trọng tâm G của tam giác ABC.
b) Tìm tọa độ điểm M thuộc trục Oz sao cho đường thẳng BM vuông góc với đường thẳng AC.
Giải bài tập 2.1 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian, cho ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) phân biệt và đều khác \(\overrightarrow 0 \). Những mệnh đề nào sau đây là đúng?
a) Nếu \(\overrightarrow a \) và \(\overrightarrow b \) đều cùng hướng với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.
b) Nếu \(\overrightarrow a \) và \(\overrightarrow b \) đều ngược hướng với \(\overrightarrow c \) thì \(\overrightarrow a \) và \(\overrightarrow b \) cùng h
Giải bài tập 2.42 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Hình 2.53 minh họa một chiếc đèn được treo cách trần nhà 0,5m, cách hai tường lần lượt là 1,2m và 1,6m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4m, cách hai tường đều là 1,5m.
a) Lập một hệ trục tọa độ Oxyz phù hợp và xác định tọa độ của bóng đèn lúc đầu và sau khi di chuyển.
b) Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Giải bài tập 2.41 trang 74 SGK Toán 12 tập 1 - Kết nối tri thức
Trong không gian Oxyz, cho các điểm \(A\left( {4;2; - 1} \right),B\left( {1; - 1;2} \right)\) và \(C\left( {0; - 2;3} \right)\).
a) Tìm tọa độ của vectơ \(\overrightarrow {AB} \) và tính độ dài đoạn thẳng AB.
b) Tìm tọa độ điểm M sao cho \(\overrightarrow {AB} + \overrightarrow {CM} = \overrightarrow 0 \).
c) Tìm tọa độ điểm N thuộc mặt phẳng (Oxy), sao cho A, B, N thẳng hàng.