Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

Vở thực hành Toán 9

Chương III. Căn bậc hai và căn bậc ba

Giải câu hỏi trắc nghiệm trang 68 vở thực hành Toán 9
Căn bậc hai của 4 là A. 2. B. -2. C. 2 và -2. D. (sqrt 2 ) và ( - sqrt 2 ).
Giải bài 1 trang 65 vở thực hành Toán 9
Rút gọn các biểu thức sau: a) (frac{{5 + 3sqrt 5 }}{{sqrt 5 }} - frac{1}{{sqrt 5 - 2}}); b) (sqrt {{{left( {sqrt 7 - 2} right)}^2}} - sqrt {63} + frac{{sqrt {56} }}{{sqrt 2 }}); c) (frac{{sqrt {{{left( {sqrt 3 + sqrt 2 } right)}^2}} + sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} }}{{2sqrt {12} }}); d) (frac{{sqrt[3]{{{{left( {sqrt 2 + 1} right)}^3}}} - 1}}{{sqrt {50} }}).
Giải câu hỏi trắc nghiệm trang 63 vở thực hành Toán 9
Khẳng định nào sau đây là sai? A. Mọi số thực đều có căn bậc ba. B. Mọi số thực âm đều có căn bậc ba. C. Mọi số thực dương đều có hai căn bậc ba phân biệt. D. Mọi số thực âm đều có một căn bậc ba duy nhất.
Giải câu hỏi trắc nghiệm trang 59 vở thực hành Toán 9
Phép biến đổi nào sau đây là đúng? A. ( - 5sqrt 2 = sqrt {left( { - 5} right).2} ). B. ( - 5sqrt 2 = sqrt {{{left( { - 5} right)}^2}.2} ). C. ( - 5sqrt 2 = - sqrt {{5^2}.2} ). D. ( - 5sqrt 2 = sqrt {{{left| 5 right|}^2}.2} ).
Giải bài 1 trang 55 vở thực hành Toán 9
Rút gọn các biểu thức sau: a) (sqrt {{{left( {sqrt 3 - sqrt 2 } right)}^2}} + sqrt {{{left( {1 - sqrt 2 } right)}^2}} ); b) (sqrt {{{left( {sqrt 7 - 3} right)}^2}} + sqrt {{{left( {sqrt 7 + 3} right)}^2}} ).
Giải câu hỏi trắc nghiệm trang 53 vở thực hành Toán 9
Xét 4 khẳng định sau: (1) (sqrt {{a^2}{b^2}} = left| {ab} right|), (a, b tùy ý); (2) (sqrt {{a^2}{b^2}} = ab), (a, b tùy ý); (3) (sqrt {{a^2}{b^2}} = left| a right|left| b right|), (a, b tùy ý); (4) (sqrt {{a^2}{b^2}} = left( { - a} right)left( { - b} right)), (a, b tùy ý); Trong 4 khẳng định trên, số khẳng định đúng là: A. 1. B. 2. C. 3. D. 4.
Giải câu hỏi trắc nghiệm trang 50 vở thực hành Toán 9
Khẳng định nào trong các khẳng định sau là đúng? A. Mọi số thực đều có căn bậc hai. B. Mọi số thực âm đều có căn bậc hai. C. Mọi số thực không âm đều có hai căn bậc hai phân biệt. D. Mọi số thực dương đều có hai căn bậc hai phân biệt.
Giải bài 6 trang 68 vở thực hành Toán 9
Không sử dụng MTCT, tính giá trị của biểu thức (A = sqrt {{{left( {sqrt 3 - 2} right)}^2}} + sqrt {4{{left( {2 + sqrt 3 } right)}^2}} - frac{1}{{2 - sqrt 3 }}).
Giải bài 2 trang 66 vở thực hành Toán 9
Tính giá trị của các biểu thức sau: a) (3sqrt {45} + frac{{5sqrt {15} }}{{sqrt 3 }} - 2sqrt {245} ); b) (frac{{sqrt {12} - sqrt 4 }}{{sqrt 3 - 1}} - frac{{sqrt {21} + sqrt 7 }}{{sqrt 3 + 1}} + sqrt 7 ); c) (frac{{3 - sqrt 3 }}{{1 - sqrt 3 }} + sqrt 3 left( {2sqrt 3 - 1} right) + sqrt {12} ); d) (frac{{sqrt 3 - 1}}{{sqrt 2 }} + frac{{sqrt 2 }}{{sqrt 3 - 1}} - frac{6}{{sqrt 6 }}).
Giải bài 1 trang 63 vở thực hành Toán 9
Tính: a) (sqrt[3]{{216}}); b) (sqrt[3]{{ - 512}}); c) (sqrt[3]{{ - 0,001}}); d) (sqrt[3]{{1,331}}).
Giải bài 1 trang 59 vở thực hành Toán 9
Đưa thừa số ra ngoài dấu căn: a) (sqrt {52} ); b) (sqrt {27a} left( {a ge 0} right)); c) (sqrt {50sqrt 2 + 100} ); d) (sqrt {9sqrt 5 - 18} ).
Giải bài 2 trang 56 vở thực hành Toán 9
Thực hiện phép tính: a) (sqrt 3 left( {sqrt {192} - sqrt {75} } right)); b) (frac{{ - 3sqrt {18} + 5sqrt {50} - sqrt {128} }}{{7sqrt 2 }}).
Giải bài 1 trang 53 vở thực hành Toán 9
Tính: a) (sqrt {12} .left( {sqrt {12} + sqrt 3 } right)); b) (sqrt 8 .left( {sqrt {50} - sqrt 2 } right)); c) ({left( {sqrt 3 + sqrt 2 } right)^2} - 2sqrt 6 ).
Giải bài 1 trang 50 vở thực hành Toán 9
Tìm căn bậc hai của mỗi số sau (làm tròn đến chữ số thập phân thứ hai): a) 24,5. b) (frac{9}{{10}}).
Giải bài 7 trang 69 vở thực hành Toán 9
Cho biểu thức (A = frac{{sqrt x + 2}}{{sqrt x - 2}} - frac{4}{{sqrt x + 2}}) ((x ge 0) và (x ne 4)). a) Rút gọn biểu thức A. b) Tính giá trị của A tại (x = 14).
Giải bài 3 trang 66 vở thực hành Toán 9
Giả sử lực F của gió khi thổi theo phương vuông góc với bề mặt cánh buồm của một con thuyền tỉ lệ thuận với bình phương tốc độ của gió, hệ số tỉ lệ là 30. Trong đó, lực F được tính bằng N (Newton) và tốc độ được tính bằng m/s. a) Khi tốc độ của gió là 10m/s thì lực F là bao nhiêu Newton? b) Nếu cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000N thì con thuyền đó có thể đi được trong gió với tốc độ gió tối đa là bao nhiêu?
Giải bài 2 trang 63 vở thực hành Toán 9
Sử dụng MTCT, tính gần đúng các căn bậc ba sau đây (làm tròn kết quả đến chữ số thập phân thứ hai): a) (sqrt[3]{{2,1}}); b) (sqrt[3]{{ - 18}}); c) (sqrt[3]{{ - 28}}); d) (sqrt[3]{{0,35}}).
Giải bài 2 trang 60 vở thực hành Toán 9
Đưa thừa số vào trong dấu căn: a) (4sqrt 3 ); b) ( - 2sqrt 7 ); c) (4sqrt {frac{{15}}{2}} ); d) ( - 5sqrt {frac{{16}}{5}} ).
Giải bài 3 trang 56 vở thực hành Toán 9
Chứng minh rằng: a) ({left( {1 - sqrt 2 } right)^2} = 3 - 2sqrt 2 ); b) ({left( {sqrt 3 + sqrt 2 } right)^2} = 5 + 2sqrt 6 ).
Giải bài 2 trang 53 vở thực hành Toán 9
Rút gọn biểu thức (sqrt {2left( {{a^2} - {b^2}} right)} .sqrt {frac{3}{{a + b}}} ) (với (a ge b > 0)).
Giải bài 2 trang 50 vở thực hành Toán 9
Để chuẩn bị trồng cây trên vỉa hè, người ta để lại những ô đất hình tròn có diện tích khoảng (2{m^2}). Em hãy ước lượng (với độ chính xác 0,005) đường kính của các ô đất đó khoảng bao nhiêu mét.
Giải bài 8 trang 69 vở thực hành Toán 9
Biết rằng nhiệt lượng tỏa ra trên dây dẫn được tính bởi công thức (Q = {I^2}Rt), trong đó Q là nhiệt lượng tính bằng đơn vị Joule (J), R là điện trở tính bằng đơn vị Ohm (left( Omega right)), I là cường độ dòng điện tính bằng đơn vị Ampe (A), t là thời gian tính bằng giây (s). Dòng điện chạy qua một dây dẫn có (R = 10Omega ) trong thời gian 5 giây. a) Thay dấu “?” trong bảng sau bằng các giá trị thích hợp. b) Cường độ dòng điện phải là bao nhiêu Ampe để nhiệt lượng tỏa ra trên dây
Giải bài 4 trang 67 vở thực hành Toán 9
Rút gọn các biểu thức sau a) (sqrt[3]{{{{left( { - x - 1} right)}^3}}}); b) (sqrt[3]{{8{x^3} - 12{x^2} + 6x - 1}}).
Giải bài 3 trang 64 vở thực hành Toán 9
Một người thợ muốn làm một thùng tôn hình lập phương có thể tích bằng (730d{m^3}). Em hãy ước lượng chiều dài cạnh thùng khoảng bao nhiêu decimét.
Giải bài 3 trang 60 vở thực hành Toán 9
Khử mẫu trong dấu căn: a) (2a.sqrt {frac{3}{5}} ); b) ( - 3x.sqrt {frac{5}{x}} left( {x > 0} right)); c) ( - sqrt {frac{{3a}}{b}} left( {a ge 0,b > 0} right)).
Giải bài 4 trang 56 vở thực hành Toán 9
Cho căn thức (sqrt {{x^2} - 4x + 4} ). a) Hãy chứng tỏ căn thức xác định với mọi giá trị của x. b) Rút gọn căn thức đã cho với (x ge 2). c) Chứng tỏ rằng với mọi (x ge 2), biểu thức (sqrt {x - sqrt {{x^2} - 4x + 4} } ) có giá trị không đổi.
Giải bài 3 trang 54 vở thực hành Toán 9
Tính a) (sqrt {99} :sqrt {11} ); b) (sqrt {7,84} ); c) (sqrt {1815} :sqrt {15} ).
Giải bài 3 trang 51 vở thực hành Toán 9
Tìm điều kiện xác định của (sqrt {x + 10} ) và tính giá trị của căn thức tại (x = - 1).
Giải bài 9 trang 69 vở thực hành Toán 9
Phải tăng chiều dài các cạnh của một khối lập phương lên bao nhiêu lần để nhận được một khối lập phương mới có thể tích gấp 125 lần thể tích khối lập phương đã cho.
Giải bài 5 trang 67 vở thực hành Toán 9
Xét căn thức (sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}). a) Viết biểu thức trong dấu căn dưới dạng một lập phương. b) Tính giá trị của biểu thức (A = {x^2} - x + 3 - sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}) tại (x = 2,1).
Giải bài 4 trang 64 vở thực hành Toán 9
Rút gọn các biểu thức sau: a) (sqrt[3]{{{{left( {1 - sqrt 2 } right)}^3}}}); b) (sqrt[3]{{{{left( {2sqrt 2 + 1} right)}^3}}}); c) ({left( {sqrt[3]{{sqrt 2 + 1}}} right)^3}).
Giải bài 4 trang 60 vở thực hành Toán 9
Trục căn thức ở mẫu: a) (frac{{4 + 3sqrt 5 }}{{sqrt 5 }}); b) (frac{1}{{sqrt 5 - 2}}); c) (frac{{3 + sqrt 3 }}{{1 - sqrt 3 }}); d) (frac{{sqrt 2 }}{{sqrt 3 + sqrt 2 }}).
Giải bài 5 trang 57 vở thực hành Toán 9
Vận tốc (m/s) của một vật đang bay được cho bởi công thức (v = sqrt {frac{{2E}}{m}} ), trong đó E là động năng của vật (tính bằng Joule, kí hiệu là J) và m (kg) là khối lượng của vật (Theo Vật lí đại cương, NXB Giáo dục Việt Nam, 2016). Tính vận tốc bay của một vật khi biết vật đó có khối lượng 2,5kg và động năng 281,25J.
Giải bài 4 trang 54 vở thực hành Toán 9
Rút gọn (frac{{ - 3sqrt {16a} + 5asqrt {16a{b^2}} }}{{2sqrt a }}) (với (a > 0,b > 0)).
Giải bài 4 trang 51 vở thực hành Toán 9
Tính: (sqrt {{{5,1}^2}} ;;;;sqrt {{{left( { - 4,9} right)}^2}} ;;; - sqrt {{{left( { - 0,001} right)}^2}} ).
Giải bài 10 trang 70 vở thực hành Toán 9
Cho biểu thức: (A = frac{2}{{sqrt x }} - frac{{10 - 8sqrt x }}{{x + 5sqrt x }} + frac{{sqrt x }}{{sqrt x + 5}}) với (x > 0). a) Rút gọn biểu thức A. b) Chứng tỏ rằng giá trị của biểu thức A nhỏ hơn 2.
Giải bài 6 trang 67 vở thực hành Toán 9
Chiều dài đường xích đạo của Trái Đất có thể ước tính theo thể tích V của Trái Đất bằng công thức (C = sqrt[3]{{6V{pi ^2}}}). Cho biết Trái Đất có thể tích khoảng 1 083 207 300 000(k{m^3}). Chiều dài đường xích đạo của Trái Đất bằng bao nhiêu km (làm tròn kết quả đến hàng đơn vị)?
Giải bài 5 trang 64 vở thực hành Toán 9
Rút gọn và tính giá trị của biểu thức (sqrt[3]{{27{x^3} - 27{x^2} + 9x - 1}}) tại (x = 7).
Giải bài 5 trang 61 vở thực hành Toán 9
Rút gọn các biểu thức sau: a) (2sqrt {frac{2}{3}} - 4sqrt {frac{3}{2}} ); b) (frac{{5sqrt {48} - 3sqrt {27} + 2sqrt {12} }}{{sqrt 3 }}); c) (frac{1}{{3 + 2sqrt 2 }} + frac{{4sqrt 2 - 4}}{{2 - sqrt 2 }}).
Giải bài 6 trang 57 vở thực hành Toán 9
Vận tốc của ô tô và vết trượt bánh xe trên mặt đường khi xe phanh gấp liên hệ với nhau bởi công thức ({v^2} = 20kl), trong đó v(m/s) là vận tốc của xe khi phanh gấp, k là hệ số ma sát giữa bánh xe và mặt đường khi xe phanh và l(m) là độ dài vết trượt của bánh xe trên mặt đường. a) Viết công thức tính vận tốc xe theo hệ số ma sát k và độ dài l của vết trượt bánh xe khi ô tô phanh. b) Ô tô đang chạy trên mặt đường thì phanh gấp và tạo ra vết trượt của bánh xe dài 25m. Biết hệ số ma sát giữa bá
Giải bài 5 trang 54 vở thực hành Toán 9
Kích thước màn hình ti vi hình chữ nhật được xác định bởi độ dài đường chéo. Một loại ti vi có tỉ lệ hai cạnh màn hình là 4:3. a) Gọi x (inch) là chiều rộng của màn hình ti vi. Viết công thức tính độ dài đường chéo d (inch) của màn hình ti vi theo x. b) Tính chiều rộng và chiều dài (theo centimét) của màn hình ti vi loại 40 inch.
Giải bài 5 trang 51 vở thực hành Toán 9
Rút gọn các biểu thức sau: a) (sqrt {{{left( {2 - sqrt 5 } right)}^2}} ); b) (3sqrt {{x^2}} - x + 1;left( {x < 0} right)); c) (sqrt {{x^2} - 4x + 4} ;left( {x < 2} right)).
Giải bài 6 trang 64 vở thực hành Toán 9
Không dùng MTCT, tính ({left( {sqrt[3]{5}.sqrt[3]{7}} right)^3}). Sử dụng kết quả nhận được, hãy giải thích vì sao (sqrt[3]{5}.sqrt[3]{7} = sqrt[3]{{5.7}})
Giải bài 6 trang 61 vở thực hành Toán 9
Rút gọn biểu thức (A = sqrt x left( {frac{1}{{sqrt x + 3}} - frac{1}{{3 - sqrt x }}} right);;left( {x ge 0,x ne 9} right)).
Giải bài 7 trang 57 vở thực hành Toán 9
Không dùng MTCT, tính giá trị biểu thức sau: (A = frac{{sqrt 2 + sqrt 3 + sqrt 6 + sqrt 8 + sqrt {16} }}{{sqrt 1 + sqrt 2 }} - left( {sqrt 1 + sqrt 2 + sqrt 3 + sqrt 4 } right)).
Giải bài 6 trang 55 vở thực hành Toán 9
Không dùng MTCT, tính (sqrt {12,1} .sqrt {8,1} ).
Giải bài 6 trang 51 vở thực hành Toán 9
Không dùng MTCT, chứng tỏ biểu thức A có giá trị là số nguyên: (A = sqrt {{{left( {1 + 2sqrt 2 } right)}^2}} - sqrt {{{left( {1 - 2sqrt 2 } right)}^2}} ).
Giải bài 7 trang 65 vở thực hành Toán 9
Sử dụng định nghĩa căn bậc ba, chứng minh rằng (sqrt[3]{{7 + 5sqrt 2 }} = sqrt 2 + 1).
Giải bài 7 trang 61 vở thực hành Toán 9
Rút gọn biểu thức: a) (left( {frac{{7 - sqrt 7 }}{{1 - sqrt 7 }} + sqrt 3 } right)left( {frac{{7 + sqrt 7 }}{{1 + sqrt 7 }} + sqrt 3 } right)); b) (frac{{28}}{3}sqrt {frac{{27}}{{16}}} - 3.sqrt {frac{{49}}{3}} - frac{9}{4}.sqrt {frac{{48}}{{243}}} ).
Giải bài 7 trang 55 vở thực hành Toán 9
Không dùng MTCT, tính giá trị của các biểu thức sau: a) (A = left( {sqrt 3 - sqrt 2 } right)left( {sqrt 3 + sqrt 2 } right)); b) (B = frac{{left( {2sqrt 2 - 1} right)left( {sqrt 2 + 1} right)}}{{2 + sqrt 2 + 1}}).
Giải bài 7 trang 52 vở thực hành Toán 9
Không dùng MTCT, tính (sqrt {{{left( {sqrt {11} - 3} right)}^2}} - sqrt {{{left( {2 - sqrt {11} } right)}^2}} ).
Giải bài 8 trang 62 vở thực hành Toán 9
Xét biểu thức: (A = left( {frac{{xsqrt x + 8}}{{x - 2sqrt x + 4}} - 2sqrt x } right).frac{{sqrt x + 2}}{{x - 4}}). a) Tìm tất cả các giá trị của biến x để tính được giá trị của biểu thức. b) Chứng minh rằng với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho có giá trị không đổi.
Giải bài 8 trang 52 vở thực hành Toán 9
Không dùng MTCT, chứng minh rằng: a) ({left( {2 - sqrt 5 } right)^2} = 9 - 4sqrt 5 ); b) (sqrt {9 - 4sqrt 5 } - sqrt 5 = - 2).
×