Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

SBT Toán 9 - Kết nối tri thức

Chương V. Đường tròn - SBT Toán 9 KNTT

Giải câu hỏi trắc nghiệm trang 69, 70 sách bài tập toán 9 - Kết nối tri thức tập 1
Trong mặt phẳng tọa độ Oxy, cho đường tròn (O; (sqrt 5 )), hai điểm (Aleft( { - sqrt 3 ;1} right)) và B(-1; 2). Khi đó xảy ra: A. Điểm A nằm trong (O), điểm B nằm ngoài (O). B. Điểm A nằm trong (O), điểm B nằm trên (O). C. Điểm A nằm trên (O), điểm B nằm trong (O). D. Điểm A nằm ngoài (O), điểm B nằm trên (O).
Giải bài 5.22 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1
Hai đường tròn (O; 2cm) và (O’; 3cm) có vị trí tương đối như thế nào trong mỗi trường hợp sau: a) (OO' = 4cm)? b) (OO' = 5cm)? c) (OO' = 6cm)?
Giải bài 5.17 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn (O) và điểm P. a) Giả sử (P in left( O right)). Vẽ đường thẳng a đi qua P và vuông góc với OP. Chứng minh rằng a là tiếp tuyến của đường tròn (O) tại P. b) Giả sử P nằm ngoài (O). Vẽ đường tròn đường kính OP. Đường tròn vừa vẽ cắt (O) tại A và B. Chứng minh rằng PA và PB là hai tiếp tuyến của (O).
Giải bài 5.11 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho hình thoi ABCD có (widehat A = {75^o}) và (AB = 6cm). Vẽ đường tròn (D), bán kính 6cm. a) Chứng minh rằng A, C( in left( D right)). b) Tính độ dài cung nhỏ AC và diện tích hình quạt tròn ứng với cung nhỏ AC.
Giải bài 5.6 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Chứng minh rằng: a) Bốn điểm A, E, H, D cùng thuộc một đường tròn. b) (AH > DE).
Giải bài 5.1 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Các bánh xe (xe đạp, ô tô…) đều có dạng hình tròn (với tâm tại trục của bánh xe). Hãy giải thích lí do.
Giải bài 5.27 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác ABC có (AB < AC) và đường cao AH (H.5.12). a) Trong các điểm B, H và C, điểm nào nằm trong, điểm nào nằm trên và điểm nào nằm ngoài đường tròn (A; AB)? Vì sao? b) Xác định ví trị của điểm D trên đoạn AC trong mỗi trường hợp sau: • Đường tròn (A) và đường tròn (C; CD) tiếp xúc với nhau; • Đường tròn (A) và đường tròn (C; CD) cắt nhau; • Đường tròn (A) và đường tròn (C; CD) không giao nhau.
Giải bài 5.23 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1
Vẽ hình và chứng minh phần b của Ví dụ 2. Cho đường tròn (O) và dây AB không là đường kính của (O). a) Gọi O' là một điểm tùy ý nằm giữa O và A. Đường thẳng đi qua O' và song song với OB cắt AB tại C. Hãy xác định vị trí tương đối của (O) và (O'; O'C). b) Vị trí tương đối của (O) và (O'; O'C) sẽ như thế nào nếu O' thẳng hàng với O và A, nhưng nằm ngoài đoạn OA?
Giải bài 5.18 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường thẳng a, điểm M thuộc a và số dương R. Vẽ đường thẳng b đi qua M và vuông góc với a. Trên b xác định điểm A sao cho (AM = R) (đvđd). Chứng minh rằng đường tròn (A; R) tiếp xúc với a tại M. Ta có thể vẽ được mấy đường tròn như thế?
Giải bài 5.12 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Độ dài của một cung tròn bằng (frac{2}{5}) chu vi của hình tròn có cùng bán kính. Tính diện tích của hình quạt tròn ứng với cung tròn đó, biết diện tích của hình tròn là (S = 20c{m^2}).
Giải bài 5.7 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác cân ABC (AB=AC). Gọi (O) là đường tròn đi qua ba điểm A, B, C và E là điểm trên cung nhỏ BC sao cho $oversetfrown{BE}=oversetfrown{EC}$. a) Chứng minh rằng ba điểm A, O, E thẳng hàng. b) Gọi H là chân đường cao hạ từ A xuống BC. Chứng minh rằng (AH < AB < AE).
Giải bài 5.2 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn (O) có bán kính bằng 2,5cm và hai tia Ox, Oy vuông góc với nhau tại O. Trên tia Ox lấy điểm A sao cho (OA = 3cm); trên tia Oy lấy điểm B sao cho (OB = 4cm). Gọi M là trung điểm của đoạn AB. Chứng minh rằng điểm M nằm trên đường tròn (O).
Giải bài 5.28 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho hình thang cân ABCD (AB//CD). a) Chứng minh rằng đường trung trực d của AB cũng là đường trung trực của CD (từ đó suy ra hai điểm A và B đối xứng với nhau, C và D đối xứng với nhau qua d). b) Giải thích tại sao nếu một đường tròn đi qua ba điểm A, B và C thì nó cũng đi qua điểm D.
Giải bài 5.24 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho điểm A và đường tròn (O; R) sao cho (R < OA < 3R). a) Chứng minh rằng đường tròn (A; 2R) cắt đường tròn (O; R). Gọi B là một trong hai giao điểm của chúng. b) Gọi C là điểm đối xứng với B qua O. Nối A với C cắt (O) tại D (khác C). Chứng minh rằng (AD = DC).
Giải bài 5.19 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn (O) và điểm M nằm bên ngoài (O). Từ M kẻ tiếp tuyến MA với (O), trong đó A là tiếp điểm. Đường thẳng qua A và vuông góc với MO cắt (O) tại B (khác A). a) Chứng minh rằng MB là tiếp tuyến của (O); b) Tính OM và diện tích phần của tam giác AMB nằm bên ngoài (O), biết bán kính của (O) bằng 3cm và (widehat {MAB} = {60^o}).
Giải bài 5.13 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Trên bờ của một cái ao cá hình tròn, người ta dựng ba cái chòi câu cá tại các điểm A, B và C. Biết rằng tam giác ABC cân tại B và có (AB = BC = 10m,widehat {ABC} = {120^o}) (H.5.5). a) Tính bán kính của ao cá. b) Tính độ dài quãng đường (men theo bờ ao) từ chòi A đến chòi B và chòi C (làm tròn kết quả đến chữ số thập phân thứ nhất).
Giải bài 5.8 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1
Gọi H là trung điểm của dây AB không đi qua tâm của đường tròn (O). a) Chứng minh rằng (OH bot AB). b) Tính khoảng cách từ O đến AB, biết rằng (AB = 8cm) và bán kính của (O) bằng 5cm.
Giải bài 5.3 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Trên mặt phẳng tọa độ Oxy, cho hai điểm A(0; -3) và B(2; 0). Gọi C và D là các điểm lần lượt đối xứng với A và B qua O. a) Xác định tọa độ của hai điểm C và D. b) Xác định vị trí của các điểm A, B, C và D đối với đường tròn (O; 3).
Giải bài 5.29 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Giả sử CD là một dây song song với đường kính AB của đường tròn (O) sao cho ABCD là một tứ giác lồi. Gọi E là trung điểm của đoạn CD. a) Chứng minh rằng A đối xứng với B và C đối xứng với D qua đường thẳng OE. b) Chứng minh rằng tứ giác ABCD là một hình thang cân. c) Biết rằng (AB = 12cm) và (widehat {COD} = {100^o}). Tính độ dài cung (nhỏ) AD và cung (lớn) ABC. d) Với giả thiết ở câu c, tính diện tích hình quạt tròn ứng với cung nhỏ BD.
Giải bài 5.25 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho I là trung điểm của đoạn AB. Xét các đường tròn (I; IB) và (A; AB). a) Hai đường tròn (I) và (A) nói trên có vị trí tương đối như thế nào? b) Đường thẳng đi qua B, cắt các đường tròn (I) và (A) lần lượt tại C và D. Hãy so sánh các độ dài BC và CD.
Giải bài 5.20 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho AM và AN là hai tiếp tuyến cắt nhau của đường tròn (O), trong đó M và N là hai tiếp điểm. Gọi E là một điểm thuộc cung nhỏ MN. Tiếp tuyến của (O) tại E cắt AM tại B và cắt AN tại C. Biết (AB = 10cm), (AC = 7cm) và (BC = 6cm). Tính độ dài của các đoạn thẳng AM, AN, BM và CN.
Giải bài 5.14 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Giả định rằng Trái Đất quay xung quanh Mặt Trời theo một quỹ đạo tròn có bán kính khoảng 150 triệu kilômét và phải hết đúng một năm (365 ngày) để hoàn thành một vòng quay. Hãy tính quãng đường Trái Đất đi được trong một ngày (làm tròn đến hàng nghìn theo đơn vị kilômét).
Giải bài 5.9 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1
Kim giờ và kim phút của một chiếc đồng hồ tạo thành góc ở tâm có số đo là bao nhiêu độ vào mỗi thời điểm sau: a) 3 giờ? b) 6 giờ? c) 8 giờ? d) 11 giờ?
Giải bài 5.4 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Trên mặt phẳng tọa độ Oxy, cho điểm A(3; 1). Gọi B, C và D là các điểm đối xứng với A lần lượt qua trục hoành, qua gốc O và qua trục tung. a) Xác định tọa độ của ba điểm B, C và D. b) Có hay không một đường tròn đi qua bốn điểm A, B, C và D. Xác định tâm và bán kính của đường tròn đó, nếu có.
Giải bài 5.30 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác vuông ABC ((widehat A = {90^o})) có (widehat C = {30^o}) và AB=3cm. Đường phân giác của góc B cắt AC tại D. a) Chứng minh rằng đường tròn (D; DA) tiếp xúc với cạnh BC. b) Tính độ dài cung nằm trong góc BDC của đường tròn (D; DA) và diện tích hình quạt tròn tương ứng với cung ấy. c) Tính diện tích hình vành khuyên tạo bởi hai đường tròn (D; DA) và (D; DC).
Giải bài 5.26 trang 68 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác ABC. a) Chứng minh rằng hai đường tròn (B; BA) và (C; CA) cắt nhau. Gọi A’ là giao điểm khác A của hai đường tròn đó. b) Chứng minh rằng A và A’ đối xứng nhau qua BC. c) Biết rằng (AA' = 24cm,AB = 15cm) và (AC = 13cm). Tính độ dài BC.
Giải bài 5.21 trang 65 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác ABC vuông tại A, có đường cao AH. a) Chứng minh rằng BC tiếp xúc với đường tròn (A) bán kính AH; b) Gọi M và N là các điểm đối xứng với H lần lượt qua AB và AC. Chứng minh rằng BM và CN là hai tiếp tuyến của (A); c) Chứng minh rằng MN là một đường kính của (A); d) Tính diện tích của tứ giác BMNC, biết (HB = 2cm) và (HC = 4,5cm).
Giải bài 5.15 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Năm học vừa qua, kết quả xếp loại học lực cuối năm học sinh của một huyện được biểu thị trong biểu đồ hình quạt tròn như hình bên: Hãy tìm số đo của các cung tròn tương ứng với mỗi hình quạt biểu thị các số liệu cho trên hình.
Giải bài 5.10 trang 59 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho ba điểm A, B và C nằm trên đường tròn (O) sao cho (widehat {AOB} = {110^o}) và (sđoversetfrown{AC}={{50}^{o}}). Tính số đo của cung lớn BC.
Giải bài 5.5 trang 56 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn (O), đường kính AB và điểm M thuộc (O) (M không trùng với điểm nào trong hai điểm A và B). Trên (O) lấy điểm N nằm khác phía của M đối với đường thẳng AB sao cho (AM = BN). Chứng minh rằng O là trung điểm của đoạn MN.
Giải bài 5.31 trang 71 sách bài tập toán 9 - Kết nối tri thức tập 1
Từ điểm P nằm ngoài đường tròn (O), kẻ hai tiếp tuyến PA và PB đến đường tròn (A và B là hai tiếp điểm). a) Chứng minh rằng (PO bot AB). b) Gọi C là điểm đối xứng với A qua O. Chứng minh rằng BC//PO. c) Tính độ dài các cạnh của tam giác PAB, biết OA=3cm và OP=5cm.
Giải bài 5.16 trang 62 sách bài tập toán 9 - Kết nối tri thức tập 1
Một chiếc pizza hình tròn được chia thành 8 miếng như nhau bởi 4 nhát cắt qua tâm (H.5.6). a) Mỗi miếng bánh có dạng một hình quạt tròn ứng với cung bao nhiêu độ? b) Người ta chọn một chiếc hộp có đáy là hình vuông để đặt lọt chiếc bánh vào trong đó (mà vẫn giữ nguyên hình tròn). Hỏi mỗi cạnh đáy của chiếc hộp đó tối thiểu phải dài bao nhiêu centimét (làm tròn đến hàng đơn vị), biết rằng diện tích bề mặt mỗi miếng bánh đó bằng (60c{m^2})?
Giải bài 5.32 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho tam giác ABC vuông tại A, đường cao AH. Từ B và từ C kẻ hai đường thẳng tiếp xúc với đường tròn (A; AH) lần lượt tại D và E. Chứng minh rằng: a) Hai điểm D và E đối xứng với nhau qua A; b) DE tiếp xúc với đường tròn đường kính BC.
Giải bài 5.33 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn (O), đường thẳng a tiếp xúc với (O) tại A, đường thẳng b tiếp xúc với (O) tại B sao cho a//b. Gọi C là một điểm tùy ý thuộc (O), khác A và B. Tiếp tuyến c của (O) tại C cắt a và b lần lượt tại M và N. a) Chứng minh AB là một đường kính của (O). b) Gọi D, P và Q lần lượt là các điểm đối xứng với C, M và N qua tâm O. Chứng minh rằng (D in left( O right),P in b) và (Q in a). c) Chứng minh rằng PQ tiếp xúc với (O) tại D. d) Chứng minh tứ giác MNPQ là một hình thoi.
Giải bài 5.34 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài với nhau tại A, hai điểm (B in left( O right)) và (C in left( {O'} right)) sao cho B và C nằm cùng phía đối với đường thẳng OO’ và OB//O’C. a) Chứng minh góc BAC là góc vuông. b) Cho biết (R = 3cm), (R' = 1cm) và BC cắt OO’ tại D. Tính độ dài đoạn OD.
Giải bài 5.35 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 1
Cho đường tròn tâm O, đường kính MN. Một đường tròn (N) cắt (O) tại A và B. a) Chứng minh rằng MA và MB là hai tiếp tuyến của (N). b) Đường thẳng qua N và vuông góc với NA cắt MB tại C. Chứng minh hai điểm M và N đối xứng với nhau qua OC. c) Đường thẳng qua M và vuông góc với MA cắt NB tại D. Chứng minh ba điểm O, C và D thẳng hàng.
×