Giải chuyên đề 4. Phép chia hết, phép chia có dư Toán nâng cao lớp 5
Dạng 2: Xác định các chữ số chưa biết của một số tự nhiên Toán nâng cao lớp 5
Dạng 3: Các bài toán về phép chia có dư Toán nâng cao lớp 5 Bài tập tự luyện: Các bài toán về phép chia hết phép chia có dư Toán nâng cao lớp 5 Dạng 1: Vận dụng dấu hiệu chia hết để viết các số tự nhiên Toán nâng cao lớp 5Dạng 2: Xác định các chữ số chưa biết của một số tự nhiên Toán nâng cao lớp 5
Thay x, y bởi chữ số thích hợp để nhận được số tự nhiên A = 1996xy chia hết cho 2 ; 5 và 9. Cho N = a378b là số tự nhiên có 5 chữ số khác nhau. Tìm tất cả những chữ số a, b để thay vào ta được số N chia hết cho 3 và 4.
Phương pháp giải: - Nếu số phải tìm chia hết cho 2 hoặc 5 thì trước hết ta dựa vào dấu hiệu chia hết cho 2 hoặc 5 để xác định chữ số hàng đơn vị. - Tiếp đó, dùng phương pháp thử chọn kết hợp với các dấu hiệu chia hết để xác định các chữ số còn lại. |
Ví dụ 1: Thay x, y bởi chữ số thích hợp để nhận được số tự nhiên A = chia hết cho 2 ; 5 và 9.
Giải
A chia hết cho 2 và 5 vậy y phải bằng 0.
Thay vào ta được A = . Vì A chia hết cho 9 nên:
1 + 9 + 9 + 6 + x = x + 25 chia hết cho 9. Suy ra x = 2
Vậy x = 2; y = 0 và A = 199620.
Ví dụ 2: Cho N = là số tự nhiên có 5 chữ số khác nhau. Tìm tất cả những chữ số a, b để thay vào ta được số N chia hết cho 3 và 4.
Giải
N chia hết cho 4 thì chia hết cho 4. Vậy b bằng 0 ; 4 hoặc 8
N có năm chữ số khác nhau nên b bằng 0 hoặc 4.
- Nếu b = 0, ta có N =
Vì N chia hết cho 3 nên a bằng 3 ; 6 hoặc 9.
Mặt khác, do N có năm chữ số khác nhau nên a bằng 6 hoặc 9.
Thay vào ta được các số 63 780 ; 93 780.
- Nếu b = 4, ta có N = .
Vì N chia hết cho 3 nên a bằng 2 ; 5 hoặc 8.
Mặt khác, vì N có năm chữ số khác nhau nên a = 2 hoặc 5. Thay vào ta được các số 23 784 ; 53 784.
Vậy ta tìm được các cặp số a và b như sau: a = 6; b = 0
a = 9; b = 0
a = 2 ; b = 4
a = 5 ; b = 4
N là: 63 780 ; 93 780 ; 23 784 ; 53 784
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365