Bài 18. Xác suất có điều kiện - Toán 12 Kết nối tri thức
Giải mục 2 trang 68,69,70 SGK Toán 12 tập 2 - Kết nối tri thức
Giải bài tập 6.1 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải bài tập 6.2 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải bài tập 6.3 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải bài tập 6.4 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải bài tập 6.5 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải bài tập 6.6 trang 70 SGK Toán 12 tập 2 - Kết nối tri thức Giải mục 1 trang 65,66,67 SGK Toán 12 tập 2 - Kết nối tri thức Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thứcGiải mục 2 trang 68,69,70 SGK Toán 12 tập 2 - Kết nối tri thức
CÔNG THỨC NHÂN XÁC SUẤT
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 68 SGK Toán 12 Kết nối tri thức
Chứng minh rằng, với hai biến cố A và B, \(P\left( B \right) > 0\), ta có: \(P\left( {AB} \right) = P\left( B \right).P\left( {A|B} \right)\).
LT4
Trả lời câu hỏi Luyện tập 4 trang 69 SGK Toán 12 Kết nối tri thức
Trở lại Ví dụ 4. Tính xác suất để:
a) Sơn lấy được bút bi xanh và Tùng lấy được bút bi đen;
b) Hai chiếc bút lấy ra có cùng màu.
VD
Trả lời câu hỏi Vận dụng trang 69 SGK Toán 12 Kết nối tri thức
Trở lại trò chơi “Ô cửa bí mật” trong tình huống mở đầu. Giả sử người chơi chọn cửa số 1 và người quản trò mở cửa số 3.
Kí hiệu \({E_1};{E_2};{E_3}\) tương ứng là các biến cố: “Sau ô cửa số 1 có ô tô”; “Sau ô cửa số 2 có ô tô”; “Sau ô cửa số 3 có ô tô” và H là biến cố: “Người quản trò mở ô cửa số 3 thấy có con lừa”.
Sau khi người quản trò mở cánh cửa số 3 thấy con lừa, tức là khi H xảy ra. Để quyết định thay đổi lựa chọn hay không, người chơi cần so sánh hai xác suất có điều kiện: \(P\left( {{E_1}|H} \right)\) và \(P\left( {{E_2}|H} \right)\).
a) Chứng minh rằng:
b) Sử dụng công thức tính xác suất có điều kiện và công thức nhân xác suất, chứng minh rằng:
c) Từ các kết quả trên hãy suy ra: \(P\left( {{E_2}|H} \right) = 2P\left( {{E_1}|H} \right)\).
Từ đó hãy đưa ra lời khuyên cho người chơi: Nên giữ nguyên sự lựa chọn ban đầu hay chuyển sang cửa chưa mở còn lại?
Hướng dẫn: Nếu \({E_1}\) xảy ra, tức là sau cửa sổ 1 có ô tô. Khi đó, sau cửa số 2 và 3 là con lừa. Người quản trò chọn ngẫu nhiên một trong hai cửa số 2 và 3 để mở ra. Do đó, việc chọn cửa số 2 hay cửa số 3 có khả năng như nhau. Vậy \(P\left( {H|{E_1}} \right) = \frac{1}{2}\).
Nếu \({E_2}\) xảy ra, tức là cửa số 2 có ô tô. Khi đó, người quản trò chắc chắn phải mở cửa số 3. Do đó \(P\left( {H|{E_2}} \right) = 1\).
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365