Trò chuyện
Tắt thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Đại Sảnh Kết Giao
Chat Tiếng Anh
Trao đổi học tập
Trò chuyện linh tinh
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Khảo sát và vẽ đồ thị một số hàm số cơ bản Toán 12 Chân trời sáng tạo

1. Sơ đồ khảo sát hàm số Các bước khảo sát hàm số

1. Sơ đồ khảo sát hàm số

Các bước khảo sát hàm số

1. Tìm tập xác định của hàm số

2. Xét sự biến thiên của hàm số

  • Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số (nếu có)
  • Lập BBT của hàm số bao gồm: Tính đạo hàm của hàm số, xét dấu đạo hàm, xét chiều biến thiên và tìm cực trị của hàm số (nếu có), điền các kết quả vào bảng

3. Vẽ đồ thị của hàm số

  • Vẽ các đường tiệm cận (nếu có)
  • Xác định các điểm đặc biệt của đồ thị: cực trị, giao điểm của đồ thị với các trục tọa độ (trong trường hợp đơn giản), …
  • Nhận xét về đặc điểm của đồ thị: chỉ ra tâm đối xứng, trục đối xứng (nếu có)

2. Khảo sát hàm số y=ax3+bx2+cx+d(a0)

Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x3+3x24

1. Tập xác định của hàm số: R

2. Sự biến thiên:

  • Ta có: y=3x2+6x. Vậy y’ = 0 khi x = 0 hoặc x = 2
  • Trên khoảng (0;2), y’ > 0 nên hàm số đồng biến. Trên các khoảng (;0)(2;+), y’ < 0 nên hàm số nghịch biến trên mỗi khoảng đó
  • Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu yCT=4. Hàm số đạt cực đại tại x = 2, giá trị cực đại
  • Giới hạn tại vô cực: limxy=+;limx+y=
  • BBT:

3. Đồ thị:

  • Giao điểm của đồ thị hàm số với trục tung là điểm (0;4)
  • Ta có: y = 0 x = -1 hoặc x = 2. Do đó giao điểm của đồ thị hàm số với trục hoành là các điểm (1;0)(2;0)
  • Đồ thị hàm số có tâm đối xứng là điểm \(\left( {1; - 2} \right)\

3. Khảo sát hàm số y=ax+bcx+d(c0,adbc0)

Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x+1x2

1. Tập xác định của hàm số: R\{2}

2. Sự biến thiên:

  • Ta có: y=3(x2)2<0 với mọi x2
  • Hàm số nghịch biến trên từng khoảng (;2)(2;+)
  • Hàm số không có cực trị
  • Tiệm cận: limxy=1;limx+=1

                  limx2y=;limx2+y=+

Do đó, đồ thị của hàm số có tiệm cận đứng là x = 2, tiệm cận ngang là y = 1

  • BBT:

3. Đồ thị:

  • Giao điểm của đồ thị hàm số với trục tung là điểm (0;12)
  • Giao điểm của đồ thị hàm số với trục hoành là điểm (1;0)
  • Đồ thị hàm số nhận giao điểm I (2;1) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm trục đối xứng

4. Khảo sát hàm số y=ax2+bx+cpx+q(a0,p0) (đa thức tử không chia hết cho đa thức mẫu)

Ví dụ: Khảo sát sự biến thiên và vẽ đồ thị của hàm số y=x2x1x2

1. Tập xác định của hàm số: R\{2}

2. Sự biến thiên: Viết y=x+1+1x2

  • Ta có: y=11(x2)2=x24x+3(x2)2 . Vậy y’ = 0 x = 1 hoặc x = 3
  • Trên các khoảng (;1)(3;+), y’ > 0 nên hàm số đồng biến trên từng khoảng này
  • Trên các khoảng (1;2)(2;3), y’ < 0 nên hàm số nghịch biến trên từng khoảng này
  • Hàm số đạt cực đại tại x = 1 với ; hàm số đạt cực tiểu tại x = 3 với yCT=5
  • limxy=;limx+y=+

limx2y=;limx2+y=+

limx+[y(x+1)]=limx+1x2=0; limx[y(x+1)]=limx1x2=0

 

Do đó, đồ thị của hàm số có tiệm cận đứng là x = 2, tiệm cận xiên là y = x+1

  • BBT:

3. Đồ thị:

  • Giao điểm của đồ thị hàm số với trục tung là điểm (0;12)
  • Ta có: y=0x=152;x=1+52. Do đó giao điểm của đồ thị hàm số với trục hoành là điểm (152;0);(1+52;0)
  • Đồ thị hàm số nhận giao điểm I (2;3) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của các góc tạo bởi hai đường tiệm cận này làm trục đối xứng

5. Vận dụng đạo hàm và khảo sát hàm số để giải quyết một số vấn đề liên quan đến thực tiễn

Ví dụ: Số dân của một thị trấn sau t năm kể từ năm 1970 được ước tính bởi công thức f(t)=26t+10t+5 (f(t) được tính bằng nghìn người)

a) Tính số dân của thị trấn vào năm 2022

b) Xem y = f(t) là một hàm số xác định trên nửa khoảng [0;+). Khảo sát sự biến thiên và vẽ đồ thị của hàm số f(t)

c) Đạo hàm của hàm số y = f(t) biểu thị tốc độ tăng dân số của thị trấn (tính bằng nghìn người/năm)

  • Tính tốc độ tăng dân số vào năm 2022 của thị trấn đó
  • Vào năm nào thì tốc độ tăng dân số là 0,192 nghìn người/năm ?

Giải:

a) Ta có: f(52)=26.52+1052+5=13625723,895 (nghìn người)

Vậy số dân của thị trấn vào năm 2022 khoảng 23895 nghìn người

b)

1) Sự biến thiên

  • Giới hạn tại vô cực và đường tiệm cận ngang:

limt+f(t)=26. Do đó, đường thẳng y = 26 là tiệm cận ngang của đồ thị hàm số.

  • BBT:

f(t)=120(t+5)2>0 với mọi t0

Hàm số đồng biến trên nửa khoảng [0;+).

Hàm số không có cực trị

2) Đồ thị

  • Giao điểm của đồ thị với trục tung (0;2)
  • Đồ thị hàm số đi qua điểm (1;6). Vậy đồ thị hàm số y=f(t)=26t+10t+5, t0 được cho ở hình vẽ sau

c)

  • Tốc độ tăng dân số vào năm 2022 của thị trấn đó là:

f(52)=120(52+5)2=401083

  • Ta có:

f(t)=0,192120(t+5)2=0,192(t+5)2=625t=20 (do t0)

Vậy vào năm 1990, tốc độ tăng dân số là 0,192 nghìn người/năm.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Khái quát về khu vực đòi hỏi tính an toàn cao: Định nghĩa, tiêu chuẩn và các nguyên tắc an toàn liên quan

Khái niệm môi trường làm việc khắc nghiệt - Định nghĩa và yếu tố ảnh hưởng. Các loại môi trường làm việc khắc nghiệt - Nhiệt độ cao, không khí độc hại, tiếng ồn, ánh sáng mạnh, áp suất cao, độ ẩm thấp. Ảnh hưởng của môi trường làm việc khắc nghiệt đến sức khỏe - Đau đầu, mệt mỏi, khó thở, nguy cơ bị bệnh, tác động tâm lý và tăng nguy cơ tai nạn lao động. Biện pháp bảo vệ sức khỏe trong môi trường làm việc khắc nghiệt - Đeo khẩu trang, sử dụng thiết bị bảo hộ, điều chỉnh nhiệt độ và độ ẩm, tránh tiếng ồn, kiểm soát ánh sáng, điều chỉnh áp suất.

Đào tạo cách sử dụng và bảo trì: mục đích và lợi ích

Khái niệm về rủi ro nghiêm trọng

Khái niệm về cháy nổ

Khái niệm về sự cố điện và nguyên nhân gây ra sự cố trong hệ thống điện. Loại sự cố điện phổ biến gồm chập điện, rò điện, quá tải, ngắn mạch, và mất điện. Cách xử lý và phòng tránh các sự cố điện. Tác hại của sự cố điện đến tài sản và tính mạng con người.

Khái niệm máy biến thế truyền tải

Truyền tải điện áp: Khái niệm, tầm quan trọng và cơ chế truyền tải điện áp. Điện áp cao và điện áp thấp: Giải thích và ứng dụng. Các phương pháp truyền tải điện áp: Dây, cáp và không dây. Ứng dụng của truyền tải điện áp cao điện áp thấp: Công nghiệp, năng lượng, giao thông và đời sống.

Khái niệm về điện gia dụng

Khái niệm về tiêu chuẩn kỹ thuật

Xem thêm...
×