Bài 18. Hàm số y = ax² (a ≠ 0) - Toán 9 Kết nối tri thức
Lý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức
Giải mục 1 trang 5 SGK Toán 9 tập 2 - Kết nối tri thức Giải mục 2 trang 6, 7, 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.1 trang 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.2 trang 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.3 trang 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.4 trang 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.5 trang 8 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.6 trang 9 SGK Toán 9 tập 2 - Kết nối tri thức Giải bài tập 6.7 trang 9 SGK Toán 9 tập 2 - Kết nối tri thứcLý thuyết Hàm số y = ax² (a ≠ 0) Toán 9 Kết nối tri thức
1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) xác định với mọi giá trị x thuộc \(\mathbb{R}\).
1. Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) xác định với mọi giá trị x thuộc \(\mathbb{R}\). |
Ví dụ: Hàm số \(y = 2{x^2},y = - \frac{3}{2}{x^2}\) là các hàm số có dạng \(y = a{x^2}\left( {a \ne 0} \right)\).
2. Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Cách vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
- Lập bảng ghi một số cặp giá trị tương ứng của x và y. - Trong mặt phẳng tọa độ Oxy, biểu diễn các cặp điểm (x; y) trong bảng giá trị trên và nối chúng lại để được một đường cong là đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\). |
Ví dụ: Vẽ đồ thị của hàm số \(y = {x^2}\).
Lập bảng một số giá trị tương ứng giữa x và y:
Biểu diễn các điểm \(\left( { - 2;4} \right)\), \(\left( { - 1;1} \right)\), \(\left( {0;0} \right)\), \(\left( {1;1} \right)\), \(\left( {2;4} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại với nhau, ta được đồ thị hàm số \(y = {x^2}\) như hình vẽ sau:
Tính đối xứng của đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\)
Đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) là một đường cong, gọi là đường parabol, có các tính chất sau: - Có đỉnh là gốc tọa độ O; - Có trục đối xứng là Oy; - Nằm phía trên trục hoành nếu a > 0 và nằm phía dưới trục hoành nếu a < 0. |
Nhận xét:
- Khi vẽ đồ thị hàm số \(y = a{x^2}\left( {a \ne 0} \right)\), ta cần xác định tối thiểu 5 điểm thuộc đồ thị là gốc tọa độ O và hai cặp điểm đối xứng với nhau qua trục tung Oy.
- Do đồ thị của hàm số \(y = a{x^2}\left( {a \ne 0} \right)\) nhận trục tung Oy là trục đối xứng nên ta có thể lập bảng giá trị của hàm số này với những giá trị x không âm và vẽ phần đồ thị tương ứng ở bên phải trục tung, sau đó lấy đối xứng phần đồ thị đã vẽ qua trục tung ta sẽ được đồ thị của hàm số đã cho.
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365