Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

Lý thuyết Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo

Lý thuyết Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo ngắn gọn, đầy đủ, dễ hiểu

I. Số nguyên tố và hợp số

1. Số nguyên tố

- Số nguyên tố là số tự nhiên lớn hơn \(1,\) chỉ có \(2\) ước \(1\)  và chính nó.

Ví dụ : Ư\((13) = \{ 13;1\} \) nên \(13\) là số nguyên tố.

Cách kiểm tra 1 số là số nguyên tố:

Để kết luận số a là số nguyên tố \(\left( {a > 1} \right),\)ta làm như sau:

Bước 1: Tìm số nguyên tố lớn nhất \(b\)\({b^2} < a\).

Bước 2: Lấy \(a\) chia cho các số nguyên tố từ 2 đến số nguyên tố \(b\), nếu \(a\) không chia hết cho số nào thì \(a\) là số nguyên tố.

2. Hợp số

Hợp số là số tự nhiên lớn hơn \(1,\)nhiều hơn \(2\) ước.

Ví dụ: số \(15\)\(4\) ước là \(1;3;5;15\) nên \(15\) là hợp số.

Lưu ý: +) Số 0 và số 1 không là số nguyên tố cũng không là hợp số.+) Kiểm tra một số \(a\) là hợp số: Sử dụng dấu hiệu chia hết để tìm một ước của \(a\) khác 1 và \(a\).

II. Phân tích một số ra thừa số nguyên tố

1. Cách tìm một ước nguyên tố của một số

Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

Để tìm một ước nguyên tố của \(a\) ta có thể làm như sau:

Bước 1: Chia \(a\) cho các số nguyên tố theo thứ tự tăng dần \(2,3,5,7,11,13,...\)

Bước 2: Số chia trong phép chia hết đầu tiên là một ước của \(a\)

Ví dụ:

Tìm ước nguyên tố của 91:

Theo các dấu hiệu chia hết cho 2, 3 và 5 thì 91 không chia hết cho 2 , cho 3 và cho 5.

Ta chia 91 cho số nguyên tố tiếp theo:

Ta lấy 91:7=13. Vì thế 7 là một ước nguyên tố của 91.

2. Phân tích một số ra thừa số nguyên tố

- Phân tích một số tự nhiên lớn hơn \(1\)  ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

- Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.

Sơ đồ cây:

Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.

Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.

Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.

Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.

Sơ đồ cột:

Chia số \(n\) cho một số nguyên tố (xét từ nhỏ đến lớn ), rồi chia thương tìm được cho một số nguyên tố (cũng  xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng \(1.\)

Ví dụ: Số \(76\) được phân tích như sau:

\(76\) \(2\)
\(38\) \(2\)
\(19\) \(19\)
\(1\)  

Như vậy \(76 = {2^2}.19\)

CÁC DẠNG TOÁN VỀ SỐ NGUYÊN TỐ, HỢP SỐ. PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ

I. Viết số nguyên tố hoặc hợp số từ những số cho trước

Phương pháp:

+ Căn cứ vào định nghĩa số nguyên tố và hợp số.

+ Căn cứ vào các dấu hiệu chia hết.

+ Có thể dùng bảng số nguyên tố ở cuối sgk để xác định một số (nhỏ hơn 1000) là số nguyên tố hay không.

Ví dụ: 

Tìm các số * để được số nguyên tố $\overline {*1} $:Dấu * có thể nhận các giá trị \(\left\{ {1;2;3;4;5;6;7;8;9} \right\}\)+) Với $a=1$ ta có \(11\) là số nguyên tố => Thỏa mãn.+) Với $a=2$ ta có \(21\) có các ước \(1;3;7;21\) nên \(21\) là hợp số=> Loại.+) Với $a=3$ ta có \(31\) là số nguyên tố => Thỏa mãn.+) Với $a=4$ ta có \(41\) chỉ có hai ước là \(1;41\) nên \(41\) là số nguyên tố => Thỏa mãn.+) Với $a=5$ ta có \(51\) có các ước \(1;3;17;51\) nên \(51\) là hợp số. Loại+) Với $a=6$ ta có \(61\) là số nguyên tố => Thỏa mãn.+) Với $a=7$ ta có \(71\) là số nguyên tố => Thỏa mãn.+) Với $a=8$ ta có \(81\) có các ước \(1;3;9;27;81\) nên \(81\) là hợp số. Loại.+) Với $a=9$ ta có \(91\) là có các ước \(1;7;13;91\) nên \(91\) là hợp số. LoạiVậy các số nguyên tố là: $11,31,41,61,71$.

II. Chứng minh một số là số nguyên tố hay hợp số.

Phương pháp:

+ Để chứng minh một số là số nguyên tố, ta chứng minh số đó không có ước nào khác $1$ và chính nó.

+ Để chững minh một số là hợp số, ta chỉ ra rằng tồn tại một ước của nó khác $1$ và khác chính nó. Nói cách khác, ta chứng minh số đó có nhiều hơn hai ước.

Ví dụ:

a) $5$ là số nguyên tố vì nó chỉ có hai ước là $1$ và $5$.

b) $12$ là hợp số vì nó có nhiều hơn hai ước. Cụ thể 12 có các ước là: $1; 2; 3; 4; 6; 12$

III. Phân tích các số cho trước ra thừa số nguyên tố

Phương pháp:

Ta thường phân tích một số tự nhiên $n\left( {n > 1} \right)$ ra thừa số nguyên tố bằng 2 cách:

+ Sơ đồ cây

+ Phân tích theo hàng dọc.

IV. Ứng dụng phân tích một số ra thừa số nguyên tố để tìm các ước của số đó

Phương pháp:

+ Phân tích số cho trước ra thừa số nguyên tố.

+ Chú ý rằng nếu $c = a.b$  thì $a$  và $b$ là hai ước của $c.$

$a = b.q$\( \Leftrightarrow a \vdots b \Leftrightarrow a \in B\left( b \right)\) và \(b \in \)Ư\(\left( a \right)\) $(a,b,q \in N,b \ne 0)$

V. Bài toán đưa về việc phân tích một số ra thừa số nguyên tố

Phương pháp:

 Phân tích đề bài, đưa về việc tìm ước của một số cho trước bằng cách phân tích số đó ra thừa số nguyên tố.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Khái niệm về ngũ cốc và vai trò quan trọng trong dinh dưỡng. Các loại ngũ cốc phổ biến và giá trị dinh dưỡng của chúng. Công dụng và lợi ích của ngũ cốc trong việc duy trì sức khỏe, giảm cân, cung cấp năng lượng và hỗ trợ hệ tiêu hóa.

Định nghĩa động kinh - khái niệm, triệu chứng và điều trị. Nguyên nhân gây ra động kinh - di truyền, sự cố trong não và tổn thương. Loại hình động kinh - cơ địa, cục bộ, cơn lớn, cơn nhỏ và nghiêm trọng. Chẩn đoán và điều trị động kinh - phương pháp xét nghiệm và điều trị hiện đại.

Khái niệm về Thần kinh - Hệ thần kinh và vai trò cơ thể - Cấu trúc của Thần kinh - Chức năng của Thần kinh - Bệnh lý và rối loạn Thần kinh.

Khái niệm về trách nhiệm và vai trò của nó trong cuộc sống và xã hội. Trách nhiệm là khả năng và nghĩa vụ của cá nhân hoặc tổ chức phải chịu trách nhiệm và đối mặt với hậu quả của hành động hay quyết định của mình.

Giới thiệu về rượu rum - Khái quát, quá trình sản xuất và các loại phổ biến

Khái niệm về màu nâu đỏ: định nghĩa và mô tả về sắc thái màu này. Màu nâu đỏ mang đến cảm giác ấm áp, mạnh mẽ và độc lập. Tạo thành từ sự kết hợp của màu nâu và màu đỏ. Màu nâu đỏ có nhiều variante và có thể thể hiện sự sang trọng và tinh tế. Mô tả quá trình tạo thành màu nâu đỏ, bao gồm sự kết hợp của các màu cơ bản và yếu tố ảnh hưởng. Tổng quan về các tính chất và cách biểu hiện màu nâu đỏ trong các vật liệu và nghệ thuật. Mô tả các ứng dụng phổ biến của màu nâu đỏ trong thiết kế, trang trí và ngành công nghiệp.

Đậm đà trong ẩm thực: Khám phá ý nghĩa và cách tạo ra hương vị đậm đà trong món ăn.

Khái niệm về ngọt ngào và cơ chế cảm nhận của con người

Lợi ích của kết hợp món ăn: tăng cường hương vị và dinh dưỡng. Nguyên tắc kết hợp món ăn: cân bằng hương vị, phối hợp nguyên liệu, đối xứng và đồng hành. Kỹ thuật kết hợp món ăn: sử dụng gia vị, phối hợp nguyên liệu và thời điểm kết hợp. Ví dụ kết hợp món ăn: kết hợp món ăn Á - Âu, Đông - Tây và Châu Á.

Giới thiệu về bánh ngọt - Khái niệm và định nghĩa về bánh ngọt, một loại thức ăn phổ biến và phổ biến trên toàn thế giới. Bánh ngọt là một loại thức ăn phổ biến trên toàn thế giới, được làm từ các nguyên liệu như bột mì, đường, trứng, bơ và các loại hương liệu.

Xem thêm...
×