Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

SBT Toán 9 - Kết nối tri thức

Bài 20. Định lí Viète và ứng dụng - SBT Toán 9 KNTT

Giải bài 6.17 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Tính nhẩm nghiệm của các phương trình sau: a) (sqrt 3 {x^2} - left( {sqrt 3 + 1} right)x + 1 = 0); b) (3{x^2} + left( {sqrt 5 - 1} right)x - 4 + sqrt 5 = 0); c) (2{x^2} - 3sqrt 5 x + 5 = 0), biết rằng phương trình có một nghiệm là (x = sqrt 5 ).
Giải bài 6.18 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Tìm hai số u và v, biết: a) (u + v = 17,uv = 72); b) ({u^2} + {v^2} = 73,uv = 24).
Giải bài 6.19 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Dùng định lí Viète, tính nhẩm nghiệm của các phương trình sau: a) ({x^2} - 8x + 15 = 0); b) ({x^2} + 5x + 6 = 0).
Giải bài 6.20 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Cho phương trình bậc hai (ẩn x): ({x^2} - 4x + m - 2 = 0). a) Tìm điều kiện của ẩn m để phương trình có nghiệm. b) Với các giá trị m tìm được ở câu a, gọi ({x_1}) và ({x_2}) là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau theo m: (A = x_1^2 + x_2^2;B = x_1^3 + x_2^3).
Giải bài 6.21 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Giả sử phương trình bậc hai (a{x^2} + bx + c = 0left( {a ne 0} right)) có hai nghiệm là ({x_1}), ({x_2}) đều khác 0. Hãy lập phương trình bậc hai có hai nghiệm là (frac{1}{{{x_1}}}) và (frac{1}{{{x_2}}}).
Giải bài 6.22 trang 14 sách bài tập toán 9 - Kết nối tri thức tập 2
Chứng tỏ rằng nếu phương trình bậc hai (a{x^2} + bx + c = 0) có hai nghiệm là ({x_1}), ({x_2}) thì đa thức (a{x^2} + bx + c) được phân tích được thành nhân tử như sau: (a{x^2} + bx + c = aleft( {x - {x_1}} right)left( {x - {x_2}} right)). Áp dụng: Phân tích các đa thức sau thành nhân tử: (2{x^2} - 9x + 7); (4{x^2} + left( {sqrt 2 - 3} right)x - 7 + sqrt 2 ).
Giải bài 6.23 trang 14 sách bài tập toán 9 - Kết nối tri thức tập 2
Tìm m để phương trình ({x^2} + 4x + m = 0) có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).
Giải bài 6.24 trang 14 sách bài tập toán 9 - Kết nối tri thức tập 2
Bác Long có 48 mét lưới thép. Bác muốn dùng để rào xung quanh một mảnh đất trống (đủ rộng) thành một mảnh vườn hình chữ nhật để trồng rau. a) Biết diện tích của mảnh vườn là (108{m^2}), hãy tính chiều dài và chiều rộng của mảnh vườn. b) Hỏi diện tích lớn nhất của mảnh vườn mà bác Long có thể rào được là bao nhiêu mét vuông?

Bài xem nhiều

Giải bài 6.21 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Giả sử phương trình bậc hai (a{x^2} + bx + c = 0left( {a ne 0} right)) có hai nghiệm là ({x_1}), ({x_2}) đều khác 0. Hãy lập phương trình bậc hai có hai nghiệm là (frac{1}{{{x_1}}}) và (frac{1}{{{x_2}}}).
Giải bài 6.23 trang 14 sách bài tập toán 9 - Kết nối tri thức tập 2
Tìm m để phương trình ({x^2} + 4x + m = 0) có hai nghiệm ({x_1},{x_2}) thỏa mãn (x_1^2 + x_2^2 = 10).
Giải bài 6.18 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Tìm hai số u và v, biết: a) (u + v = 17,uv = 72); b) ({u^2} + {v^2} = 73,uv = 24).
Giải bài 6.20 trang 13 sách bài tập toán 9 - Kết nối tri thức tập 2
Cho phương trình bậc hai (ẩn x): ({x^2} - 4x + m - 2 = 0). a) Tìm điều kiện của ẩn m để phương trình có nghiệm. b) Với các giá trị m tìm được ở câu a, gọi ({x_1}) và ({x_2}) là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau theo m: (A = x_1^2 + x_2^2;B = x_1^3 + x_2^3).
Giải bài 6.22 trang 14 sách bài tập toán 9 - Kết nối tri thức tập 2
Chứng tỏ rằng nếu phương trình bậc hai (a{x^2} + bx + c = 0) có hai nghiệm là ({x_1}), ({x_2}) thì đa thức (a{x^2} + bx + c) được phân tích được thành nhân tử như sau: (a{x^2} + bx + c = aleft( {x - {x_1}} right)left( {x - {x_2}} right)). Áp dụng: Phân tích các đa thức sau thành nhân tử: (2{x^2} - 9x + 7); (4{x^2} + left( {sqrt 2 - 3} right)x - 7 + sqrt 2 ).
×