SBT Toán 12 - Chân trời sáng tạo
Chương 6. Xác xuất có điều kiện - SBT Toán 12 Chân trời sáng tạo
Giải bài 1 trang 85 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đáp án đúng.
Cho hai biến cố (A) và (B) có (Pleft( A right) = 0,4;Pleft( B right) = 0,8) và (Pleft( {A|B} right) = 0,25).
a) Xác suất của biến cố (A) giao (B) là
A. 0,1.
B. 0,2.
C. 0,25.
D. 0,4.
b) Xác suất của (B) với điều kiện (A) là
A. 0,2.
B. 0,25.
C. 0,5.
D. 0,75.
b) Xác suất của biến cố (A) với điều kiện (A cup B) là
A. 0,4.
B. 0,5.
C. 0,8.
D. 1.
Giải bài 1 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố (A) và (B) có (Pleft( A right) = 0,4;Pleft( {B|overline A } right) = 0,2;Pleft( {B|A} right) = 0,3). Tính (Pleft( {A|overline B } right)).
Giải bài tập 1 trang 79 sách bài tập toán 12 - Chân trời sáng tạo
Một hợp chứa 15 tấm thẻ cùng loại được ghi số từ 1 đến 15. Các thẻ có số từ 1 đến 10 được sơn màu đỏ, các thể còn lại được sơn màu xanh. Bạn Việt chọn ra ngẫu nhiên 1 thẻ từ hộp.
a) Tính xác suất để thẻ được chọn có màu đỏ, biết rằng nó được ghi số chẵn. Làm tròn kết quả đến hàng phần trăm.
b) Tính xác suất để thể được chọn ghi số chẵn, biết rằng nó có màu xanh.
Giải bài 2 trang 85 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đáp án đúng.
Toàn thể nhân viên của một công ty được hỏi ý kiến về một dự thảo chính sách phúc lợi mới. Kết quả được ghi lại ở bảng sau:
Chọn ngẫu nhiên một nhân viên của công ty. Gọi (A) là biến cố “Nhân viên đó là nam giới” và (B) là biến cố “Nhân viên đó ủng hộ dự thảo chính sách phúc lợi mới”.
a) Xác suất của biến cố (A) với điều kiện (B) là:
A. (frac{9}{{16}}).
B. (frac{{15}}{{19}}).
C. (frac{{21}}{{50}}).
D. (frac{7}{{16}}).
b) Xác suất của biến cố (B) vớ
Giải bài 2 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Bạn Minh có 2 hộp đựng thẻ. Hộp thứ nhất có 4 thẻ vàng và 1 thẻ đỏ. Hộp thứ hai có 6 thẻ vàng và 2 thẻ đỏ. Các thẻ có cùng kích thước. Minh chọn ngẫu nhiên từ hộp thứ nhất ra 2 thẻ và bỏ vào hộp thứ hai. Sau đó, Minh lại chọn ngẫu nhiên từ hộp thứ hai ra 2 thẻ.
a) Tính xác suất để 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ.
b) Biết rằng 2 thẻ được chọn ra từ hộp thứ hai đều có màu đỏ, tính xác suất của biến cố 2 thẻ lấy ra từ hộp thứ nhất có cùng màu.
Giải bài 2 trang 79 sách bài tập toán 12 - Chân trời sáng tạo
Một lớp học có 40% học sinh là nam. Số học sinh nữ bị cận thị chiếm 20% số học sinh trong lớp. Chọn ngẫu nhiên 1 học sinh của lớp. Tính xác suất học sinh đó bị cận thị, biết rằng đó là học sinh nữ. Làm tròn kết quả đến hàng phần trăm.
Giải bài 3 trang 85 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đáp án đúng.
Bạn Lan có 2 con xúc xắc cân đối, 1 con có màu xanh và 1 con có màu đỏ. Lan gieo đồng thời 2 con xúc xắc.
a) Xác suất của biến cố con xúc xắc màu xanh xuất hiện mặt 1 chấm, biết rằng tổng số chấm trên hai con xúc xắc bằng 5 là:
A. (frac{1}{3}).
B. (frac{1}{5}).
C. (frac{1}{4}).
D. (frac{1}{6}).
b) Xác suất của biến cố con xúc xắc màu đỏ xuất hiện mặt 6 chấm, biết rằng có ít nhất một con xúc xắc xuất hiện mặt 6 chấm là
A. (frac{{13}}{{36}}).
B. (frac{1
Giải bài 3 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Điều tra ở một khu vực cho thấy có 35% tài xế xe ô tô là nữ. Có 12% tài xế nữ sử dụng xe 7 chỗ và 25% tài xế nam sử dụng xe 7 chỗ. Chọn ngẫu nhiên 1 tài xế ở khu vực đó.
a) Tính xác suất tài xế đó sử dụng xe 7 chỗ.
b) Biết tài xế sử dụng xe 7 chỗ, tính xác suất đó là tài xế nam.
Giải bài tập 3 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,7;P\left( B \right) = 0,3;P\left( {A|B} \right) = 0,6\). Tính \(P\left( {B|A} \right)\). Làm tròn kết quả đến hàng phần trăm.
Giải bài 4 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Cho sơ đồ hình cây dưới đây:
a) Xác suất của biến cố (B) với điều kiện (A) không xảy ra là 0,6.
b) Xác suất cả hai biến cố (A) và (B) đều xảy ra là 0,3.
c) Xác suất của biến cố (B) là 0,9.
d) Xác suất của biến cố (A) với điều kiện (B) là (frac{1}{{19}}).
Giải bài 4 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Một công ty công nghệ cung cấp hai phiên bản Basic và Pro của một phần mềm. Tỉ lệ người sử dụng hai phiên bản này lần lượt là 80% và 20%. Kết quả điều tra cho thấy có 30% người dùng phiên bản Basic sẽ mua bản cập nhật sau 1 năm sử dụng; còn tỉ lệ này của phiên bản Pro là 50%.
Chọn ngẫu nhiên một người sử dụng phần mềm trên của công ty.
a) Tính xác suất để người này mua bản cập nhật sau 1 năm sử dụng.
b) Biết người dùng mua bản cập nhật sau 1 năm sử dụng, tính xác suất người đó sử dụng phiê
Giải bài tập 4 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố \(A,B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8;P\left( {A \cup B} \right) = 0,9\).
Tính \(P\left( {A|B} \right);P\left( {A|\overline B } \right);P\left( {\overline A |B} \right);P\left( {\overline A |\overline B } \right)\).
Giải bài 5 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Ông Khải lần lượt rút ra một cách ngẫu nhiên 2 lá bài từ bộ bài tây 52 lá. Lá bài rút ra không được trả lại. Gọi (A) là biến cố “Lá bài đầu tiên rút ra là chất cơ” và (B) là biến cố “Lá bài thứ hai rút ra là lá Q”.
a) Xác suất của biến cố (A) là 0,25.
b) Xác suất của biến cố (A) giao (B) là 0,25.
c) Xác suất của biến cố (A) với điều kiện (B) là 0,25.
d) (A) và (B) là hai biến cố độc lập.
Giải bài 5 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch. Tính xác suất một người ở trại dưỡng lão mắc bệnh tim mạch, biết rằng người đó hút thuốc.
Giải bài tập 5 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố (A,B) có (Pleft( {overline A B} right) = 0,2;Pleft( {AB} right) = 0,3) và (Pleft( {Aoverline B } right) = 0,4).
Tính (Pleft( {A|B} right);Pleft( {A|overline B } right);Pleft( {overline A |B} right);Pleft( {overline A |overline B } right)).
Giải bài 1 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
Ông Hải rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá. Gọi (A) là biến cố “Lá bài được chọn là lá K” và (B) là biến cố “Lá bài được chọn là chất cơ”.
Tính (Pleft( A right),Pleft( {A|B} right)) và (Pleft( {A|overline B } right)).
Giải bài 6 trang 84 sách bài tập toán 12 - Chân trời sáng tạo
Khảo sát ở một trường đại học có 35% số máy tính sử dụng hệ điều hành X. Tỉ lệ máy tính bị nhiễm virus trong số các máy dùng hệ điều hành X gấp 4 lần tỉ lệ máy tính bị nhiễm virus trong số các máy không dùng hệ điều hành X. Tính xác suất một máy tính sử dụng hệ điều hành X, biết rằng máy tính đó bị nhiễm virus.
Giải bài tập 6 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố độc lập (A) và (B) có (Pleft( A right) = 0,4;Pleft( B right) = 0,8). Tính (Pleft( {A|A cup B} right)). Làm tròn kết quả đến hàng phần trăm.
Giải bài 2 trang 86 sách bài tập toán 12 - Chân trời sáng tạo
Một xạ thủ lần lượt bắn 2 viên đạn vào một bia. Xác suất trúng bia của viên thứ nhất là 0,7; của viên thứ hai là 0,8 và của cả 2 viên là 0,6. Gọi \(A\) là biến cố “Viên đạn thứ nhất trúng bia”, \(B\) là biến cố “Viên đạn thứ hai trúng bia”.
a) Tính \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\).
b) Hai biến cố \(A\) và \(B\) có độc lập không, tại sao?
Giải bài tập 7 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Cho hai biến cố \(A\) và \(B\) thoả mãn \(P\left( A \right) = P\left( B \right) = 0,8\). Chứng minh rằng \(P\left( {A|B} \right) \ge 0,75\).
Giải bài 3 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
Một vận động viên bóng bàn thắng 60% các séc đấu anh ta được ra bóng trước và 45% các séc đấu anh ta không được ra bóng trước. Trong một séc đấu, trọng tài gieo một đồng xu cân đối để xác định ai là người ra bóng trước. Tính xác suất vận động viên đó thắng séc đấu.
Giải bài tập 8 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Một công ty bảo hiểm ô tô nhận thấy nếu một tài xế gặp sự cố trong một năm thì xác suất gặp sự cố ở năm tiếp theo là 0,2; còn nếu trong một năm không gặp sự cố nào thì xác suất gặp sự cố ở năm tiếp theo là 0,05. Xác suất để một tài xế gặp sự cố ở năm đầu tiên lái xe là 0,1. Sử dụng sơ đồ hình cây:
a) Tính xác suất để một tài xế không gặp sự cố nào trong 2 năm đầu tiên lái xe.
b) Tính xác suất để một tài xế gặp sự cố trong cả 2 năm đầu tiên lái xe. Làm tròn kết quả đến hàng phần trăm.
Giải bài 4 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
Một doanh nghiệp có 30% số nhân viên trên 40 tuổi. Tỉ lệ nhân viên trên 40 tuổi có bằng đại học là 40%. Tỉ lệ nhân viên không quá 40 tuổi có bằng đại học là 60%. Chọn ngẫu nhiên 1 nhân viên của doanh nghiệp.
a) Tính xác suất nhân viên được chọn có bằng đại học.
b) Biết nhân viên đó có bằng đại học, tính xác suất để nhân viên đó trên 40 tuổi.
Giải bài tập 9 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Trong một đợt khám sức khoẻ, người ta thấy có 15% người dân ở một khu vực mắc bệnh béo phì. Tỉ lệ người béo phì và thường xuyên tập thể dục là 2%. Biết rằng tỉ lệ người thường xuyên tập thể dục ở khu vực đó là 40%. Theo kết quả điều tra trên, việc tập thể dục sẽ làm giảm khả năng bị béo phì đi bao nhiêu lần?
Giải bài 5 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
Hai máy X và Y cùng sản xuất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.
a) Tính xác suất cả 2 sản phẩm được chọn đều đạt chuẩn.
b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
Giải bài tập 10 trang 80 sách bài tập toán 12 - Chân trời sáng tạo
Các sản phẩm của một phân xưởng được đóng thành hộp, mỗi hộp gồm 10 sản phẩm. Các hộp sản phẩm được kiểm tra như sau: người ta lấy ra ngẫu nhiên 1 sản phẩm từ hộp, nếu sản phẩm đó xấu, hộp sẽ bị loại; nếu sản phẩm đó tốt, người ta sẽ chọn ngẫu nhiên thêm 1 sản phẩm khác từ hộp để kiểm tra. Hộp sẽ chỉ được chấp nhận nếu không có sản phẩm xấu nào trong các sản phẩm được chọn kiểm tra.
Biết có một hộp chứa 2 sản phẩm xấu. Tính xác suất để hộp đó không được chấp nhận. Làm tròn kết quả đến hàng phầ
Giải bài 6 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
Người ta quan sát một nhóm người trưởng thành trong 5 năm. Ở thời điểm bắt đầu quan sát, có 30% số người được quan sát thường xuyên hút thuốc. Sau 5 năm, người ta nhận thấy tỉ lệ tử vong trong số những người thường xuyên hút thuốc cao gấp 3 lần tỉ lệ này trong nhóm những người còn lại. Chọn ngẫu nhiên một người trong nhóm và thấy người này tử vong trong 5 năm quan sát, tính xác suất người đó thường xuyên hút thuốc.
Giải bài 7 trang 87 sách bài tập toán 12 - Chân trời sáng tạo
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi.
a) Tính xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu.
b) Biết 2 viên bi lấy ra ở hộp thứ hai có cùng màu, tính xác suất 3 viên bị lấy ra từ hộp thứ nhất cũng có cùng màu.