Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

Sự biến thiên của hàm số

Hàm số \(y = f(x)\) đồng biến (tăng) trên khoảng (a;b) nếu \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) < f({x_2})\) Hàm số \(y = f(x)\) nghịch biến (giảm) trên khoảng (a;b) nếu \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2})\)

1. Lý thuyết

Cho hàm số \(y = f(x)\) xác định trên khoảng (a;b).

+ Định nghĩa:

Hàm số \(y = f(x)\) đồng biến (tăng) trên khoảng (a;b) nếu

            \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) < f({x_2})\)

Hàm số \(y = f(x)\) nghịch biến (giảm) trên khoảng (a;b) nếu

            \(\forall {x_1},{x_2} \in (a;b),{x_1} < {x_2} \Rightarrow f({x_1}) > f({x_2})\)

Xét sự biến thiên của hàm số là tìm các khoảng hàm số đồng biến và các khoảng hàm số nghịch biến.

+ Mô tả sự biến thiên bằng bảng biến thiên

Kết quả xét sự biến thiên được tổng kết trong một bảng biến thiên. Trong đó:

Dấu mũi tên đi lên diễn tả hàm số đồng biến trên khoảng tương ứng.

Dấu mũi tên đi xuống diễn tả hàm số nghịch biến trên khoảng tương ứng.

+ Mô tả sự biến thiên bằng đồ thị

Hàm số đồng biến trên khoảng (a;b) khi và chỉ khi đồ thị hàm số  có dạng “đi lên” (từ trái sang phải) trên khoảng đó.

Hàm số nghịch biến trên khoảng (a;b) khi và chỉ khi đồ thị hàm số có dạng “đi xuống” (từ trái sang phải) trên khoảng đó.

+ Hàm số bậc nhất \(y = ax + b\) đồng biến trên \(\mathbb{R}\) nếu \(a > 0\), nghịch biến trên \(\mathbb{R}\) nếu \(a < 0\).

2. Ví dụ minh họa

Ví dụ 1. Chứng minh hàm số \(y = 2{x^2}\)đồng biến trên khoảng \((0; + \infty )\)

Xét hai số bất kì \({x_1},{x_2} \in (0; + \infty )\) sao cho \({x_1} < {x_2}\).

Ta có: \(0 < {x_1} < {x_2}\) nên \(2{x_1}^2 < 2{x_2}^2\) hay \(f({x_1}) < f({x_2})\)

Vậy hàm số đồng biến trên khoảng \((0; + \infty )\)

Ví dụ 2. Cho bảng biến thiên của hàm số \(y = 2{x^2} + 1\)

 

  • Dấu mũi tên đi xuống diễn tả hàm số nghịch biến trên khoảng \(( - \infty ;0)\)
  • Dấu mũi tên đi lên diễn tả hàm số đồng biến trên khoảng \((0; + \infty )\)

Ví dụ 3. Cho đồ thị của hàm số \(y = f(x)\)

 

Hàm số \(y = f(x)\) đồng biến trên khoảng (2;5)

Hàm số \(y = f(x)\) nghịch biến trên khoảng (-4;2)


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×