Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Chim Cánh Cụt Cam
Biểu tượng cảm xúc
😃
☂️
🐱

Giải đề thi học kì 1 toán lớp 11 năm 2019 - 2020 trường THPT chuyên Trần Đại Nghĩa

Giải chi tiết đề thi học kì 1 môn toán lớp 11 năm 2019 - 2020 trường THPT chuyên Trần Đại Nghĩa với cách giải nhanh và chú ý quan trọng

A. PHẦN CHUNG (6 điểm)

Bài 1 (1 điểm):

Giải phương trình: 4sinxcosx+2sinx23cosx3=0.

Bài 2 (VD) (1 điểm):

Xác định hệ số của số hạng không chứa x trong khai triển (x33x)8.

Bài 3 (1 điểm):

Ba xạ thủ bắn vào bia một cách độc lập, mỗi người bắt một viên đạn. Xác suất bắn trúng của ba xạ thủ lần lượt là 0,5; 0,6 và 0,8. Tính xác suất để có ít nhất hai người bắn trúng đích.

Bài 4 (1 điểm):

Bạn Bình muốn mua một món quà trị giá 900.000 đồng để tặng mẹ nhân ngày sinh nhật của mẹ vào ngày 30/9/2019. Bạn bỏ ống heo tiết kiệm mỗi ngày một lần, bắt đầu từ ngày 01/08/2019 cho đến ngày sinh nhật của mẹ. Theo cách: lần đầu tiên bỏ ống heo 500 đồng, sau đó cứ lần sau bỏ nhiều hơn lần trước 500 đồng. Hỏi đến sinh nhật mẹ Bình có đủ tiền mua quà không?

Bài 5 (2 điểm):

Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi E,H,F lần lượt là trung điểm của AD,DC,CB.

1) Gọi I là trung điểm của SF. Chứng minh IO song song với mặt phẳng (SAD).

2) Gọi G,K lần lượt là trọng tâm của ΔSAD,ΔSCD,M là trung điểm của IF. Chứng minh rằng mặt phẳng (GKI) song song với mặt phẳng (EHM). 

B. PHẦN RIÊNG (4 điểm)

I. Dành cho lớp 11A1, 11A2, 11CL, 11CH, HCS.

Bài 5a (1,5 điểm) (Làm tiếp bài 5):

Gọi (P) là mặt phẳng chứa EH và song song với IG. Xác định thiết diện của mặt phẳng (P) với hình chóp SABCD.

Bài 6a (1 điểm):

Xét tính tăng, giảm cũa dãy số (u)n với un=nn2+1.

Bài 7a (1,5 điểm):

Vòng chung kết của một giải đấu bóng đá ở châu Á có 16 đội tuyển tham gia được chia vào 4 Nhóm (như bảng bên dưới).

Nhóm 1

Nhóm 2

Nhóm 3

Nhóm 4

Nhật Bản

Hàn Quốc

Trung Quốc

Syria

Uzbekistan

Iraq

Philipines

Malaysia

Việt Nam

Iran

Jordan

UAE

Quatar

Thái Lan

Ả Rập Xê Út

Bahrain

Ban tổ chức bốc thăm để chia 16 đội này vào 4 bảng A, B, C, D sao cho trong mỗi bảng, không có hai đội nào ở cùng Nhóm (nghĩa là mỗi Bảng phải có đủ: Một đội của Nhóm 1, một đội của Nhóm 2, một đội của Nhóm 3, một đội của Nhóm 4).

Bảng A

Bảng B

Bảng C

Bảng D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tính xác suất của biến cố: ‘‘Không có bảng nào có nhiều hơn một đội của khu vực Đông Nam Á’’.

II. Dành cho lớp 11CA1, 11CA2, 11CA3, 11CV

Bài 5b (1,5 điểm) (Làm tiếp bài 5)

Tìm giao điểm của mặt phẳng (BGK)AD.

Bài 6b (1 điểm) Xét tính tăng, giảm của dãy số (un) với un=3n1n+1.

Bài 7b (1,5 điểm) Câu lạc bộ văn nghệ của trường gồm 7 học sinh lớp 12, 15 học sinh lớp 11 và 13 học sinh lớp 10. Nhà trường chọn ngẫu nhiên 5 học sinh từ câu lạc bộ văn nghệ để tham gia một tiết mục văn nghệ trong lễ bế giảng. Tính xác suất sao cho trong 5 học sinh đó có đầy đủ cả ba khối lớp và có đúng 2 học sinh lớp 12.

III. Dành cho lớp 11TH1, 11TH2

Bài 5c (1,5 điểm) (Làm tiếp bài 5)

Gọi (P) là mặt phẳng chứa IO và song song với EH. Xác định thiết diện của (P) với hình chóp S.ABCD.

Bài 6c (1 điểm) Xét tính tăng, giảm của dãy số (un) với un=n+1n+2.

Bài 7c (1,5 điểm) Một hộp đựng 12 viên bi, trong đó có 7 viên vi màu đỏ, 5 viên bi màu xanh. Lấy ngẫu nhiên một lần 3 viên bi. Tính xác suất để lấy được 2 viên bi màu xanh trong 3 viên bi lấy ra.

IV. Dành cho lớp 11CT

Bài 5d (2 điểm) Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA=a3. Gọi H,M lần lượt là trung điểm của ABBC. Biết rằng SH(ABCD).

1) Tính góc giữa hai đường thẳng SCAD.

2) Chứng minh AMHDAMSD.

Bài 6d (1 điểm) Tính giới hạn sau: lim12+22+...+n2n13+23+...+n3.

Bài 7d (1 điểm) Cho dãy số (un) xác định bởi {u1=1un+1=n+12n(un+2)nN.

Chứng minh rằng dãy số (un) có giới hạn hữu hạn và tính giới hạn đó.

 

HƯỚNG DẪN GIẢI CHI TIẾT

Thực hiện: Ban chuyên môn baitap365.com

A. PHẦN CHUNG:

Bài 1 (VD):

Phương pháp:

Giải phương trình bằng phương pháp đưa về phương trình tích sau đó giải các phương trình lượng giác cơ bản.

Cách giải:

4sinxcosx+2sinx23cosx3=02sinx(2cosx+1)3(2cosx+1)=0(2cosx+1)(2sinx3)=0[2cosx+1=02sinx3=0[cosx=12sinx=32[x=2π3+k2πx=2π3+k2πx=π3+m2πx=2π3+m2π[x=2π3+k2πx=π3+mπ(k,mZ).

Vậy phương trình có nghiệm: [x=2π3+k2πx=π3+mπ(k,mZ).

Bài 2 (TH):

Phương pháp:

Sử dụng công thức khai triển nhị thức Newton: (a+b)n=nk=0Cknankbk.

Cách giải:

Ta có: (x33x)8=8k=0Ck8x3(8k)(3x)k=8k=0Ck8(3)kx244k.

Để có hệ số không chứa x trong khai triển thì: 244k=0k=6(tm).

Vậy hệ số của số hạng không chứa x trong khai triển là: C68(3)6=20412.

Bài 3 (VD):

Phương pháp:

Với mọi biến cố ta luôn có: P(¯A)=1P(A).

Cách giải:

Gọi biến cố A: ‘‘Có ít nhất hai xạ thủ bắn trúng đích’’.

Khi đó ta có biến cố ¯A: “Không có xạ thủ nào bắn trúng đích hoặc chỉ có một xạ thủ bắn trúng đích”.

Xác suất để xạ thủ thứ nhất không bắn trúng đích là: 10,5=0,5.

Xác suất để xạ thủ thứ hai không bắn trúng đích là: 10,6=0,4.

Xác suất để xạ thủ thứ ba không bắn trúng đích là: 10,8=0,2.

Xác suất để cả 3 xạ thủ đều không bắn trúng đích là: P1=0,5.0,4.0,2=0,04.

Xác suất để có 1 xạ thủ không bắn trúng địch là: P2=0,5.0,6.0.8+0,5.0,4.0,8+0,5.0,6.0,2=0,46.

P(¯A)=0,04+0,46=0,5.

Vậy P(A)=1P(¯A)=10,5=0,5.

Bài 4 (VD):

Phương pháp:

Áp dụng công thức của cấp số cộng để làm bài toán.

Tổng của n số hạng đầu của CSC có số hạng đầu u1 và công sai d là: Sn=[2u1+(n1)d]n2.

Cách giải:

Ngày 01/08/2018 bạn Bình bỏ vào ống heo 500  đồng, ta coi u1=500 đồng.

Bắt đầu từ ngày thứ hai bạn Bình bỏ vào ống heo tăng thêm 500 đồng nữa nên d=500.

Tháng 8/2019 có 31 ngày và tính đến hết ngày 29/09/2019 thì bạn Bình có thể tiết kiệm tiền được 60 ngày.

Số tiền bạn Bình bỏ ông heo sau 60 ngày là:

S61=[2u1+(n1)d]n2=(2.500+59.500).602=915000đng.

Như vậy sau thời gian bạn Bình tiết kiệm tiền, bạn Bình có đủ tiền để mua quà sinh nhật cho mẹ vào ngày 30/09/2019.

Bài 5 (VD):

Phương pháp:

a) Chứng minh IO//SEIO//(SAD).

b) Chứng minh {GK//EGEM//IG(GHI)//(AHM).

Cách giải:

Cho hình chóp SABCD có đáy là hình bình hành tâm O. Gọi E,H,F lần lượt là trung điểm của AD,DC,CB.

 

1) Gọi I là trung điểm của SF. Chứng minh IO song song với mặt phẳng (SAD).

Xét ΔSEF ta có:

I,O lần lượt là trung điểm của SF,EF

OI là đường trung bình của ΔSEF.  (định nghĩa)

OI//SE (tính chất)

SE(SAD)OI//(SAD)(dpcm).

2) Gọi G,K lần lượt là trọng tâm của ΔSAD,ΔSCD,M là trung điểm của IF. Chứng minh rằng mặt phẳng (GKI) song song với mặt phẳng (EHM). 

Ta có: G,K lần lượt là trọng tâm ΔSADΔSCD (gt)

SGSE=SKSH=23GK//EH (định lý Talet đảo).

Ta có: I,M là trung điểm của SF,IFSISM=23.

Xét ΔSEM ta có: SGSE=AISM=23(cmt)

GI//EM (định lý Talet đảo).

{GK,GI(IGK)EH,EM(EMH)(IGK)//(EMH)(dpcm).

B. PHẦN RIÊNG:

I. Dành cho lớp 11A1, 11A2, 11CL, 11CH, HCS.

Bài 5a (VD):

Phương pháp:

Xác định mặt phẳng (P) sau đó tìm thiết diện của hình chóp. Mặt phẳng (P) chính là mặt phẳng (MEH).

Cách giải:

Gọi (P) là mặt phẳng chứa EH và song song với IG. Xác định thiết diện của mặt phẳng (P) với hình chóp SABCD.

 

Ta có: GI//EM(cmt)GI//(EMH).

Lại có: (P)EH,(P)//GI(P)(EMH).

Trong mặt phẳng (ABCD) kéo dài EH cắt BC tại P, cắt AB tại N.

Trong mặt phẳng (SBC), kéo dài PM cắt SC tại Q và cắt SBtại J.

Trong mặt phẳng (SAB), nối JN cắt SA tại T.

 Khi đó ta có:

(EMH)(SAB)=JT(EMH)(SAD)=TE(EMH)(ABCD)=EH(EMH)(SDC)=HQ(EMH)(SBC)=QJ

Vậy thiết diện cần tìm là ngũ giác JTEHQ.

Bài 6a (VD):

Xét tính tăng, giảm cũa dãy số (un) với un=nn2+1.

Phương pháp:

Xét hiệu: A=un+1un.

+) Nếu A>0 thì un là dãy số tăng.

+) Nếu A<0 thì un là dãy số giảm.

Cách giải:

Ta có: un+1=n+1(n+1)2+1=n+1n2+2n+2.

Xét hiệu: A=un+1un=n+1n2+2n+2nn2+1

A=(n+1)(n2+1)n(n2+2n+2)(n2+1)(n2+2n+2)=n3+n+n2+1n32n22n(n2+1)(n2+2n+2)=n2n+1(n2+1)(n2+2n+2).

Với nN ta có: {n2n+1<0(n2+1)(n2+2n+2)>0A<0 hay un+1<unnN.

Dãy số (un)=nn2+1 là dãy số giảm.

Bài 7a (VD):

Phương pháp:

Xác suất của biến cố A  là: P(A)=n(A)n(Ω).

Cách giải:

Xếp 4 đội của nhóm 1 vào 4 bảng có 4! cách xếp.

Xếp 4 đội của nhóm 2 vào 4 bảng có 4! cách xếp.

Xếp 4 đội của nhóm 3 vào 4 bảng có 4! cách xếp.

Xếp 4 đội của nhóm 4 vào 4 bảng có 4! cách xếp.

n(Ω)=(4!)4.

Gọi biến cố A: ‘‘Không có bảng nào có nhiều hơn một đội của khu vực Đông Nam Á’’.  Như vậy mỗi bảng đấu phải có một đội của khu vực Đông Nam Á.

Xếp 4 đội Đông Nam Á vào 4 bảng có 4! cách xếp.

Mỗi bảng chứa 1 đội Đông Nam Á của nhóm bất kì, nên phải xếp 3 đội còn lại của nhóm chứa đội Đông Nam Á đó vào 3 bảng còn lại, có 3! cách xếp.

Tương tự cho 3 bảng còn lại.

n(A)=4!(3!)4.

Vậy P(A)=4!(3!)4(4!)4=332.

II. Dành cho lớp 11CA1, 11CA2, 11CA3, 11CV

Bài 5b (VD)

Phương pháp:

- Chọn AD(α) nào đó.

- Tìm d=(BKG)(α).

- Xác định P=ADd, chứng minh P=AD(BGK).

Cách giải:

(Làm tiếp bài 5)

Tìm giao điểm của mặt phẳng (BGK)AD.

 

G là trọng tâm tam giác SAD nên SGSE=23 (Tính chất trọng tâm).

K là trọng tâm tam giác SCD nên SKSH=23 (Tính chất trọng tâm).

SGSE=SKSH=23GKEH (Định lí Ta-lét đảo).

Chọn AD(ABCD), tìm giao tuyến của (BGK)(ABCD).

+ B là điểm chung thứ nhất.

+ {(BGK)GK(ABCD)EHGKEH(cmt) Giao tuyến của (BGK)(ABCD) là đường thẳng đi qua B và song song với GK,EH.

Trong (ABCD) qua B kẻ BxGKEH(BGK)(ABCD)=Bx.

Trong (ABCD) gọi P=BxAD ta có:

{PADPBx(BGK)P(BGK)P=AD(BGK).

Bài 6b (VD)

Phương pháp:

Xét hiệu H=un+1un và kết luận về tính tăng giảm của dãy số.

Cách giải:

Xét hiệu: H=un+1un

H=3n+2n+23n1n+1H=(3n+2)(n+1)(3n1)(n+2)(n+2)(n+1)H=3n2+5n+23n25n+2(n+2)(n+1)H=4(n+2)(n+1)

Ta thấy H>0nNun+1>unnN.

Vậy dãy (un) đã cho là dãy tăng.

Bài 7b (VD)

Phương pháp:

- Chọn 2 học sinh khối 12.

- Chọn 3 học sinh còn lại có 2 TH:

   TH1: 2 học sinh khối 11 và 1 học sinh khối 10.

   TH2: 1 học sinh khối 11 và 2 học sinh khối 10.

Cách giải:

Câu lạc bộ có tổng số học sinh là 7+15+13=35 (học sinh)

Chọn ngẫu nhiên 5 học sinh n(Ω)=C535.

Gọi A là biến cố: “5 học sinh đó có đầy đủ cả ba khối lớp và có đúng 2 học sinh lớp 12”.

Số cách chọn 2 học sinh lớp 12 là C27 cách.

Chọn 3 học sinh còn lại:

TH1: 2 học sinh khối 11 và 1 học sinh khối 10: có C215.C113 cách.

TH2: 1 học sinh khối 11 và 2 học sinh khối 10: có C115.C213 cách.

số cách chọn 3 học sinh còn lại là: C215.C113+C115.C213 cách.

Áp dụng quy tắc nhân ta có: n(A)=C27(C215.C113+C115.C213).

Vậy xác suất của biến cố A là P(A)=n(A)n(Ω)=C27(C215.C113+C115.C213)C535=760546376

III. Dành cho lớp 11TH1, 11TH2

Bài 5c (VD)

Phương pháp:

Xác định giao tuyến của (P) với các mặt của hình chóp.

Cách giải:

(Làm tiếp bài 5) Gọi (P) là mặt phẳng chứa IO và song song với EH. Xác định thiết diện của (P) với hình chóp S.ABCD.

 

E là trung điểm của AD, H là trung điểm của CD(gt).

EH là đường trung bình của tam giác ADC.

EHAC (Tính chất đường trung bình).

Xét (P)(ABCD) có:

+ O là điểm chung thứ nhất.

+ {(P)EHEH(ABCD) Giao tuyến của (P)(ABCD) là đường thẳng qua O và song song với EH.

(P)(ABCD)=AC.

AC(P).

Trong (SBC) kéo dài IC cắt SB tại J, khi đó ta có:

(P)(SAB)=AJ(P)(SBC)=JC(P)(ABCD)=AC

Vậy thiết diện của hình chóp cắt bởi (P) là tam giác ACJ.

Bài 6c (VD)

Phương pháp:

Xét hiệu H=un+1un và kết luận về tính tăng giảm của dãy số.

Cách giải:

Xét hiệu: H=un+1un

H=n+2n+3n+1n+2H=(n+2)2(n+1)(n+3)(n+3)(n+2)H=n2+4n+4n24n+3(n+3)(n+2)H=1(n+3)(n+2)

Ta thấy H>0nNun+1>unnN.

Vậy dãy (un) đã cho là dãy tăng.

Bài 7c (VD)

Phương pháp:

- Tính không gian mẫu.

- Tính số kết quả thuận lợi cho biến cố: Lấy 2 viên bi xanh + 1 viên bi đỏ.

- Tính xác suất của biến cố.

Cách giải:

Lấy ra một lần 3 viên bi n(Ω)=C312.

Gọi A là biến cố: “Lấy được 2 viên bi màu xanh trong 3 viên bi lấy ra”

Lấy 2 viên bi màu xanh có C25 cách.

Lấy 1 viên bi màu đỏ có C17 cách.

Áp dụng quy tắc nhân ta có n(A)=C25.C17.

Vậy xác suất của biến cố A là: P(A)=n(A)n(Ω)=C25.C17C312=722.

IV. Dành cho lớp 11CT

Bài 5d (VD)

Phương pháp:

1) Chứng minh (SC;AD)=(SC;BC).

    Chứng minh ΔSBC vuông và tính các giá trị lượng giác của góc cần tìm.

2) Chứng minh AM.HD=0.

    Chứng minh AM vuông góc với mặt phẳng chứa SD.

Cách giải:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA=a3. Gọi H,M lần lượt là trung điểm của ABBC. Biết rằng SH(ABCD).

 

1) Tính góc giữa hai đường thẳng SCAD.

ADBC(gt)(SC;AD)=(SC;BC).

Ta có: BCAD (ABCD là hình vuông)

          SH(ABCD)SHBC.

AB,SH cắt nhau, nằm trong mặt phẳng (SAB).

BC(SAB). Mà SB(SAB)BCSB.

ΔSBC vuông tại B(SC;BC)=SCB (do SCB<900).

Xét tam giác SAB có: SH(ABCD)SHABSH là đường cao đồng thời là trung tuyến.

ΔSAB cân tại SSA=SB=a3.

Trong tam giác vuông SBC ta có: tanSCB=SBBC=a3a=3.

Vậy SCB=600 hay (SC;AD)=600.

2) Chứng minh AMHDAMSD

Ta xét tích vô hướng sau:

AM.HD=(AB+BM)(HA+AD)=(AB+12BC)(12AB+AD)=AB.(12AB)+AB.AD+12BC.(12AB)+12BC.AD=12AB2+0+0+12BC2=12a2+12a2=0

Do đó AMHD.

SH(ABCD)AMSHAM.

Ta có: {AMHD(cmt)AMSD(cmt)HDSD(SHD)AM(SHD).

SD(SHD). Vậy AMSD (đpcm).

Bài 6d (VDC)

Phương pháp:

- Sử dụng phương pháp quy nạp toán học, chứng minh 13+23+...+n3=[n(n+1)2]2nN12+22+...+n2=n(n+1)(2n+1)6nN.

- Thay các biểu thức đã được chứng minh vào biểu thức ban đầu và tính giới hạn.

Cách giải:

Trước hết, ta chứng minh 13+23+...+n3=[n(n+1)2]2nN (1) theo phương pháp quy nạp toán học.

Với n=1 ta có: VT=13=1,VP=(1.222)=1VT=VP.

Do đó (1) đúng với n=1.

Giả sử (1) đúng với n=k1, tức là 13+23+...+k3=[k(k+1)2]2. Ta cần chứng minh (1) đúng với n=k+1, tức là cần chứng minh 13+23+...+k3+(k+1)3=[(k+1)(k+2)2]2.

Theo giả thiết quy nạp, ta có:

VT=[k(k+1)2]2+(k+1)3=k2(k+1)24+(k+1)3=(k+1)2(k2+4k+4)4=(k+1)2(k+2)24=[(k+1)(k+2)2]2=VP

Do đó (1) đúng với mọi nN.

Tương tự bằng quy nạp toán học ta chứng minh được 12+22+...+n2=n(n+1)(2n+1)6nN (2) như sau:

Với n=1 ta có VT=12=1,VP=1.2.36=1VT=VP.

Do đó (2) đúng với n=1.

Giả sử (2) đúng với n=k1, tức là 12+22+...+k2=k(k+1)(2k+1)6, ta cần chứng minh (2) đúng với n=k+1, tức là cần chứng minh 12+22+...+k2+(k+1)2=(k+1)(k+2)(2k+3)6.

Theo giả thiết quy nạp, ta có:

VT=k(k+1)(2k+1)6+(k+1)2=(k+1)2k2+k+6k+66=(k+1)2k2+7k+66=(k+1)(k+2)(2k+3)6=VP

Như vậy, (2) đúng với mọi nN.

Khi đó ta có: 

12+22+...+n2n13+23+...+n3=n(n+1)(2n+1)6n[n(n+1)2]2=n(n+1)(2n+1)6n.n(n+1)2=2n+13n

Vậy lim12+22+...+n2n13+23+...+n3=lim2n+13n=23.

Bài 7d (VDC)

Cách giải:

Giả sử dãy số (un) tồn tại giới hạn hữu hạn và limun=a(aR).

Ta có: limn+12n=lim1+1n2=12.

Từ giả thiết un+1=n+12n(un+2) ta có:

limun+1=lim[n+12n(un+2)]a=12(a+2)a=12a+1a=2.

Vậy dãy số (un) tồn tại giới hạn và limun=2.

baitap365.com


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Khái niệm về sự phát triển tế bào

Giảm đau cơ: Tổng quan, nguyên nhân và vai trò trong quá trình chữa trị - Các loại thuốc giảm đau cơ và phương pháp khác - Lưu ý khi sử dụng thuốc giảm đau cơ.

Khái niệm về viêm khớp, nguyên nhân và triệu chứng. Phương pháp chẩn đoán viêm khớp bao gồm xét nghiệm máu, x-quang và siêu âm. Phương pháp điều trị viêm khớp bao gồm dùng thuốc, phẫu thuật và thay đổi lối sống. Biện pháp phòng ngừa viêm khớp bao gồm tập thể dục, giảm cân và ăn uống lành mạnh.

Tăng cường trí nhớ - Quá trình nâng cao khả năng ghi nhớ và tái hiện thông tin. Có ba loại trí nhớ chính và vai trò quan trọng của nó trong học tập và cuộc sống. Cơ chế hoạt động của trí nhớ bao gồm lưu trữ, ghi nhận và phục hồi thông tin. Phương pháp tăng cường trí nhớ bao gồm học tập, rèn luyện, tập trung và nghỉ ngơi. Thực hành tăng cường trí nhớ bằng việc viết ghi chú, hình dung, lặp lại và sử dụng các công cụ hỗ trợ.

Khái niệm táo bón: Cách nhận biết và nguyên nhân gây ra táo bón. Biện pháp giảm tình trạng táo bón: Thay đổi chế độ ăn uống, tập luyện, sử dụng thuốc. Thực đơn giảm tình trạng táo bón: Các loại thực phẩm giàu chất xơ và nước. Bài tập giảm tình trạng táo bón: Bài tập đơn giản và dễ thực hiện hàng ngày. Sử dụng thuốc giảm tình trạng táo bón: Cách sử dụng và lưu ý.

Giới thiệu về giải độc cơ thể

Khái niệm tắm muối

Giới thiệu về nước uống và vai trò của nó trong đời sống con người. Các loại nước uống phổ biến như nước khoáng, nước giải khát, nước ép hoa quả, nước ngọt và nước lọc. Tác dụng của nước uống đối với sức khỏe con người bao gồm cung cấp năng lượng, giảm cân, tốt cho da và giảm nguy cơ mắc bệnh. Thói quen uống nước hợp lý bao gồm đo lường lượng nước cần uống hàng ngày, chọn lựa nước uống phù hợp và uống nước đúng cách.

Giới thiệu về gia vị và tầm quan trọng trong ẩm thực và đời sống. Loại gia vị thông dụng và cách sử dụng. Tác dụng của gia vị trong chế biến thực phẩm và sức khỏe con người. Cách lựa chọn và bảo quản gia vị để đảm bảo chất lượng và độ tươi mới.

Khái niệm về điểm mặn và ảnh hưởng của nó trong hóa học. Điểm mặn là nồng độ muối trong dung dịch, ảnh hưởng đến tính chất dung dịch và quá trình hóa học. Việc hiểu về điểm mặn là cơ sở quan trọng để nắm vững các khái niệm và ứng dụng trong hóa học.

Xem thêm...
×