SBT Toán 11 - Chân trời sáng tạo
Chương 2. Dãy số. Cấp số cộng. Cấp số nhân - SBT Toán 11 CTST
Giải câu hỏi trắc nghiệm trang 64 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \frac{1}{n}\). Trong các khẳng định sau, khẳng định nào đúng?
A. Dãy số \(\left( {{u_n}} \right)\) có \({u_3} = \frac{1}{6}\).
B. Dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
C. Dãy số \(\left( {{u_n}} \right)\) là dãy số không tăng không giảm.
D. Dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
Giải bài 1 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 3\) và \(q = \frac{2}{3}\). Tìm công thức số hạng tổng quát của cấp số nhân đó.
Giải bài 1 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) \({u_n} = 2n + 3\);
b) \({u_n} = - 3n + 1\);
c) \({u_n} = {n^2} + 1\);
d) \({u_n} = \frac{2}{n}\).
Giải bài 1 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{{2n + 1}}\). Số \(\frac{8}{{15}}\) là số hạng thứ bao nhiêu của dãy số?
Giải bài 1 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\), biết
a) \({u_n} = \frac{{2n + 9}}{{n + 3}}\);
b) \({u_n} = \frac{1}{{\sqrt {2\;024 + n} }}\);
c) \({u_n} = \frac{{n!}}{{{2^n}}}\).
Giải bài 2 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = - 3\) và \(q = \frac{2}{3}\). Tìm \({u_5}\).
Giải bài 2 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) \({u_n} = 3n + 1\);
b) \({u_n} = 4 - 5n\);
c) \({u_n} = \frac{{2n + 3}}{5}\);
d) \({u_n} = \frac{{n + 1}}{n}\);
e) \({u_n} = \frac{n}{{{2^n}}}\);
g) \({u_n} = {n^2} + 1\).
Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_{n + 1}} = - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).
Giải bài 2 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành cấp số cộng. Tính độ dài các cạnh của tam giác đó.
Giải bài 3 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_2} = \frac{1}{4}\) và \({u_5} = 16\). Tìm công bội q và số hạng đầu \({u_1}\).
Giải bài 3 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng tổng quát: \({u_n} = 7n - 3\).
a) Tìm số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\).
b) Tìm \({u_{2012}}\).
c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng \(\left( {{u_n}} \right)\).
d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?
Giải bài 3 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho dãy số \(\left( {{u_n}} \right)\) xác định bởi \(\left\{ \begin{array}{l}{u_1} = 4\\{u_{n + 1}} = {u_n} + n\left( {n \ge 1} \right)\end{array} \right.\). Tìm số hạng thứ năm của dãy số đó.
Giải bài 3 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Chu vi của một đa giác là 213cm, số đo các cạnh của nó lập thành cấp số cộng với công sai \(d = 7cm\) và cạnh lớn nhất bằng 53cm. Tính số cạnh của đa giác đó.
Giải bài 4 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 1\) và \(q = 2\). Số 1 024 là số hạng thứ bao nhiêu của cấp số nhân đó?
Giải bài 4 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} = 5\) và \(d = 3\).
a) Tìm số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\).
b) Tìm \({u_{99}}\).
c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?
d) Cho biết \({S_n} = 34275\). Tìm n.
Giải bài 4 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 1} \right)^n}\).
Giải bài 4 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho a, b, c theo thứ tự lập thành cấp số cộng. Chứng minh: \({a^2} - {c^2} = 2ab - 2bc\).
Giải bài 5 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_5} - {u_2} = 78\\{u_6} - {u_3} = 234\end{array} \right.\).
Giải bài 5 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_{18}} - {u_3} = 75\). Tìm công sai d.
Giải bài 5 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau:
a) \({u_n} = \frac{{2n - 13}}{{3n - 2}}\);
b) \({u_n} = \frac{{{n^2} + 3n + 1}}{{n + 1}}\);
c) \({u_n} = \frac{1}{{\sqrt {1 + n + {n^2}} }}\).
Giải bài 5 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xác định số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có \(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right.\).
Giải bài 6 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 2,{u_3} = 18\).
a) Tìm công bội.
b) Tính tổng 10 số hạng đầu tiên của cấp số nhân đó.
Giải bài 6 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_4} + {u_{12}} = 90\). Tìm \({S_{15}}\).
Giải bài 6 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính tăng, giảm của các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau:
a) \({u_n} = n - \sqrt {{n^2} - 1} \);
b) \({u_n} = \frac{{n + {{\left( { - 1} \right)}^n}}}{{{n^2}}}\);
c) \({u_n} = \frac{{{3^n} - 1}}{{{2^n}}}\).
Giải bài 6 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân \(\left( {{u_n}} \right)\), biết \({u_1} = 12,\frac{{{u_3}}}{{{u_8}}} = 243\). Tìm \({u_9}\).
Giải bài 7 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Bác Năm gửi tiết kiệm vào ngân hàng 100 triệu đồng với hình thức lãi kép, kì hạn một năm với lãi suất 8%/ năm. Tính số tiền cả gốc và lãi bác Năm nhận được sau 10 năm. (Giả sử lãi suất không thay đổi trong suốt thời gian gửi tiền).
Giải bài 7 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xác định số hạng đầu và công sai của cấp số cộng \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_1} + {u_6} = 18\\{u_3} + {u_7} = 22\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_9} - {u_4} = 15\\{u_3}.{u_8} = 184\end{array} \right.\);
c) \(\left\{ \begin{array}{l}{u_6} = 8\\u_2^2 + u_4^2 = 16\end{array} \right.\).
Giải bài 7 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Xét tính tăng, giảm và bị chặn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{n^2}}}\).
Giải bài 7 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho cấp số nhân: \( - \frac{1}{5};a; - \frac{1}{{125}}\). Tính giá trị của a.
Giải bài 8 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một người chơi nhảy bungee trên một cây cầu với một sợi dây dài 100m. Sau mỗi lần rơi xuống, người chơi được kéo lên một quãng đường có độ dài bằng 80% so với lần rơi trước và lại rơi xuống đúng bằng quãng đường vừa được kéo lên. Tính tổng quãng đường đi lên của người đó sau 10 lần được kéo lên.
Giải bài 8 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Bác Tư vào làm cho một công ty với hợp đồng về tiền lương mỗi năm như sau:
Năm thứ nhất: 240 triệu;
Từ năm thứ hai trở đi: Mỗi năm tăng thêm 12 triệu.
Tính số tiền lương một năm của bác Tư vào năm thứ 11.
Giải bài 8 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một cấp số nhân có số hạng đầu \({u_1} = 3\), công bội \(q = 2\). Biết \({S_n} = 765\). Tìm n.
Giải bài 9 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một rạp hát có 20 hàng ghế. Hàng thứ nhất có 20 ghế, số ghế ở các hàng sau đều hơn số ghế hàng ngay trước đó một ghế. Cho biết rạp hát đã bán hết vé với giá mỗi vé là 60 nghìn đồng. Tính tổng số tiền vé thu được của rạp hát.
Giải bài 9 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một tháp 10 tầng có diện tích sàn của tầng dưới cùng là \(6\;144{m^2}\). Tính diện tích mặt sàn tầng trên cùng, biết rằng diện tích mặt sàn mỗi tầng bằng nửa diện tích mặt sàn tầng ngay bên dưới.
Giải bài 10 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Một khay nước có nhiệt độ ({20^0}C) được đặt vào ngăn đá của tủ lạnh. Cho biết sau mỗi giờ, nhiệt độ của nước giảm đi 25%. Tính nhiệt độ khay nước đó sau 4 giờ.