Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

Lý thuyết Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12 Kết nối tri thức

1. Định nghĩa Khái niệm GTLN, GTNN của hàm số

1. Định nghĩa

Khái niệm GTLN, GTNN của hàm số

Cho hàm số y = f(x) xác định trên tập D.

- Số M là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) M với mọi xD và tồn tại x0D sao cho f(x0) = M.

Kí hiệu M = maxxDf(x) hoặc M = maxDf(x)

- Số m là giá trị nhỏ nhất của hàm số y = f(x) trên tập D nếu f(x) m với mọi xD và tồn tại x0D sao cho f(x0) = m.

Kí hiệu m = minxDf(x) hoặc m = minDf(x)

Ví dụ: Tìm GTLN, GTNN của hàm số y=f(x)=1x2

Tập xác định của hàm số là [1;1]

Ta có:

f(x)=1x2 0; dấu bằng xảy ra khi 1x2=0, tức x = -1 hoặc x = 1.

Do đó minx[1;1]f(x)=f(1)=f(1)=0

f(x)=1x2 1; dấu bằng xảy ra khi 1x2=1, tức x = 0.

Do đó maxx[1;1]f(x)=f(0)=1

2. Cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn

Giả sử y = f(x) là hàm số liên tục trên [a;b] và có đạo hàm trên (a;b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn [a;b] mà đạo hàm f’(x) = 0.

Các bước tìm GTLN và GTNN của hàm số f(x) trên đoạn [a;b]:

  1. Tìm các điểm x1,x2,...,xn(a;b), tại đó f’(x) = 0 hoặc không tồn tại
  2. Tính f(x1),f(x2),...,f(xn),f(a)f(b)
  3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:

M = max[a;b]f(x); m = min[a;b]f(x)

Ví dụ: Tìm GTLN và GTNN của hàm số y=x44x2+3 trên đoạn [0;4]

Ta có: y=4x38x=4x(x22);y=0x=0 hoặc x=2 (vì x[0;4])

            y(0) = 3; y(4) = 195; y(2) = -1

Do đó: max[0;4]y=y(4)=195; min[0;4]y=y(2)=1


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

×