Đoạn chat
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? users[u.user].first_name + ' ' + users[u.user].last_name : (u.title == '' ? users[u.user].first_name + ' ' + users[u.user].last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}
Giờ đây, hãy bắt đầu cuộc trò chuyện
Xem thêm các cuộc trò chuyện
Trò chuyện
Tắt thông báo
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
{{ name_current_user == '' ? current_user.first_name + ' ' + current_user.last_name : name_current_user }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.count_unread_messages > 99 ? '99+': u.count_unread_messages }}
{{ u.title == null ? u.user.first_name + ' ' + u.user.last_name : (u.title == '' ? u.user.first_name + ' ' + u.user.last_name : u.title) }}
{{u.last_message}}
.
{{u.last_message_time}}

Đang trực tuyến

avatar
{{u.first_name}} {{u.last_name}}
Đang hoạt động
{{c.title}}
{{c.contact.username}}
{{ users[c.contact.id].first_name +' '+ users[c.contact.id].last_name}}
{{c.contact.last_online ? c.contact.last_online : 'Gần đây'}}
Đang hoạt động
Loading…
{{m.content}}

Hiện không thể nhắn tin với người dùng này do đã bị chặn từ trước.

Biểu tượng cảm xúc
😃
☂️
🐱
{{e.code}}

Đề thi giữa kì 1 Toán 12 Cánh diều - Đề số 5

Phần I: Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án. Câu 1. Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:

Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1 :

Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau:

Trong các mệnh đề sau, có bao nhiêu mệnh đề sai?

i) Hàm số đã cho đồng biến trên các khoảng (-∞;-5) và (-3;-2).

ii) Hàm số đã cho đồng biến trên khoảng (-∞;5).

iii) Hàm số đã cho nghịch biến trên khoảng (-2;+∞).

iv) Hàm số đã cho đồng biến trên khoảng (-∞;-2).

  • A

    1

  • B

    2

  • C

    3

  • D

    4

Đáp án : A

Phương pháp giải :

Quan sát bảng biến thiên và nhận xét.

Lời giải chi tiết :

Nhìn vào bảng biến thiên ta thấy đồ thị hàm số đã cho đồng biến trên khoảng (-∞;-2); nghịch biến trên khoảng (-2;+∞).

Suy ra ii) Sai; iii) Đúng; iv) Đúng.

Ta thấy khoảng (-∞;-3) chứa khoảng (-∞;-5) nên i) Đúng.

Vậy chỉ có ii) sai.

Câu 2 :

Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào sau đây?

  • A

    \(y = \frac{{2 - 2x}}{{x + 1}}\)

  • B

    \(y = 2{x^3} - x + 1\)

  • C

    \(y = \frac{{ - 2x + 1}}{{x + 2}}\)

  • D

    \(y = {x^4} + 2{x^2} + 2\)

Đáp án : A

Phương pháp giải :

Quan sát đồ thị và nhận xét.

Lời giải chi tiết :

Ta có đây là đồ thị hàm số dạng \(y = \frac{{ax + b}}{{cx + d}}\).

Mặt khác, đồ thị có tiệm cận đứng x = -1.

Câu 3 :

Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

Tìm giá trị lớn nhất của hàm số g(x) = 2f(x) – 1trên đoạn [–1;2].

 

  • A

    3

  • B

    4

  • C

    5

  • D

    6

Đáp án : C

Phương pháp giải :

Quan sát đồ thị và nhận xét.

Lời giải chi tiết :

Dựa vào đồ thị ta thấy:

\(\mathop {\max }\limits_{[ - 1;2]} f(x) = 3\).

Do đó, \(\mathop {\max }\limits_{[ - 1;2]} g(x) = 2\mathop {\max }\limits_{[ - 1;2]} f(x) - 1 = 2.3 - 1 = 5\).

Câu 4 :

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

  • A

    1

  • B

    3

  • C

    2

  • D

    4

Đáp án : B

Phương pháp giải :

Quan sát bảng biến thiên và nhận xét.

Lời giải chi tiết :

Dựa vào bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {0^ - }} f(x) =  + \infty \), \(\mathop {\lim }\limits_{x \to {{( - 2)}^ + }} f(x) =  - \infty \) nên x = 0, x = -2 là tiệm cận đứng của đồ thị hàm số.

Mặt khác: \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = 0\) nên y = 0 là tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị có ba tiệm cận.

Câu 5 :

Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - 9x + 3}}{{x + 2}}\) là:

  • A

    y = 2x + 13

  • B

    y = -2x + 13

  • C

    y = 2x - 13

  • D

    y = -2x - 13

Đáp án : C

Phương pháp giải :

Thực hiện phép chia đa thức (ở tử) cho đa thức (ở mẫu) ta được \(y = ax + b + \frac{M}{{cx + d}}\)(a≠0) với M là hằng số.

Đường thẳng y = ax + b (a≠0) gọi là đường tiệm cận xiên của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).

Kết luận đường thẳng y = ax +b là đường tiệm cận xiên của đồ thị hàm số.

Lời giải chi tiết :

Ta có: \(y = \frac{{2{x^2} - 9x + 3}}{{x + 2}} = 2x - 13 + \frac{{29}}{{x + 2}} = f(x)\).

Từ đó: \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f(x) - (2x - 13)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{29}}{{x + 2}} = 0\).

Vậy đường thẳng y = 2x - 13 là đường tiệm cận xiên của đồ thị hàm số đã cho.

Câu 6 :

Tọa độ tâm đối xứng của đồ thị hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) là:

  • A

    (2;1)

  • B

    (-1;3)

  • C

    (3;2)

  • D

    (2;3)

Đáp án : D

Phương pháp giải :

Tìm tiệm cận ngang và tiệm cận đứng của đồ thị và tìm giao điểm của chúng.

Lời giải chi tiết :

Tiệm cận ngang của đồ thị là y = 3, tiệm cận đứng của đồ thị là x = 2 nên tâm đối xứng có tọa độ (2;3).

Câu 7 :

Cho hình hộp chữ nhật ABCD.A’B’C’D’. Khẳng định nào sau đây là đúng?

  • A

    \(\overrightarrow {AB}  = \overrightarrow {CD} \)

  • B

    \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {AC'} \)

  • C

    \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {BD} \)

  • D

    \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'}  = \overrightarrow {A'C} \)

Đáp án : B

Phương pháp giải :

Dựa vào quy tắc ba điểm, khái niệm hai vecto bằng nhau và quy tắc hình hộp.

Lời giải chi tiết :

A sai vì \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) ngược hướng.

B đúng (theo quy tắc hình hộp).

C sai (theo quy tắc ba điểm).

D sai (theo quy tắc hình hộp).

Câu 8 :

Đường cong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?

  • A

    \(y =  - {x^3} + 3{x^2} + 1\)

  • B

    \(y =  - {x^3} + 3x + 1\)

  • C

    \(y = {x^3} - 3x + 1\)

  • D

    \(y =  - {x^3} - 3x + 1\)

Đáp án : B

Phương pháp giải :

Quan sát đồ thị và nhận xét.

Lời giải chi tiết :

Dựa vào đồ thị ta thấy \(\mathop {\lim }\limits_{x \to  + \infty } y =  - \infty \) nên hệ số a < 0. Loại đáp án C.

Hàm số có hai điểm cực trị \({x_1} < 0 < {x_2}\) nên y’ = 0 có hai nghiệm trái dấu.

Xét đáp án A, có \(y' =  - 3{x^2} + 6x = 0 \Leftrightarrow \) x = 0 hoặc x = 2 (loại).

Xét đáp án D, có \(y' =  - 3{x^2} - 3x < 0\) \((\forall x \in \mathbb{R})\) (loại).

Câu 9 :

Giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {0;\frac{{3\pi }}{2}} \right]\) là:

  • A

    -2

  • B

    2

  • C

    0

  • D

    \(\frac{{3\sqrt 3 }}{2}\)

Đáp án : C

Phương pháp giải :

Tìm đạo hàm của hàm số sau đó tính các giá trị f(x).

Lời giải chi tiết :

\(f'(x) = 2\cos x + 2\cos 2x = 4\cos \frac{x}{2}\cos \frac{{3x}}{2}\).

Vì \(x \in \left[ {0;\frac{{3\pi }}{2}} \right]\) nên \(f'(x) = 0 \Leftrightarrow x = 0,x = \frac{\pi }{3}\).

Ta có: \(f\left( 0 \right) = 0\); \(f\left( {\frac{\pi }{3}} \right) = \frac{{3\sqrt 3 }}{2}\); \(f\left( {\frac{{5\pi }}{6}} \right) = \frac{{2 - \sqrt 3 }}{2}\).

Vậy giá trị nhỏ nhất của hàm số \(y = 2\sin x + \sin 2x\) trên đoạn \(\left[ {\frac{\pi }{3};\frac{{5\pi }}{6}} \right]\) bằng 0.

Câu 10 :

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có bảng biến thiên như hình vẽ sau:

  • A

    \(y = {x^3} + 3{x^2} - 4\)

  • B

    \(y =  - {x^3} + 3{x^2} + 4\)

  • C

    \(y = {x^3} + 3{x^2} + 4\)

  • D

    \(y =  - {x^3} + 3{x^2} - 4\)

Đáp án : D

Phương pháp giải :

Dựa vào sự biến thiên, cực trị và các điểm hàm số đi qua để lập hệ phương trình tìm hệ số.

Lời giải chi tiết :

Ta có: \(f'(x) = 3a{x^2} + 2bx + c\).

Đồ thị hàm số đạt cực trị tại điểm (0;-4) và (2;0) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{f'(0) = 0}\\{f(0) =  - 4}\\{f'(2) = 0}\\{f(2) = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{c = 0}\\{d =  - 4}\\{12a + 4b + c = 0}\\{8a + 4b + 2c + d = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3a + b = 0}\\{2a + b = 1}\\{c = 0}\\{d =  - 4}\end{array}} \right.} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 3}\\{c = 0}\\{d =  - 4}\end{array}} \right.\)

Vậy hàm số cần tìm là \(y =  - {x^3} + 3{x^2} - 4\).

Câu 11 :

Trong không gian Oxyz, cho hai điểm M(2;3;1), N(3;1;5). Tọa độ của vecto \(\overrightarrow {MN} \) là

  • A

    (-5;-4;-6)

  • B

    (5;4;6)

  • C

    (-1;2;-4)

  • D

    (1;-2;4)

Đáp án : A

Phương pháp giải :

\(\overrightarrow {MN}  = ({x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M})\).

Lời giải chi tiết :

\(\overrightarrow {MN}  = ({x_N} - {x_M};{y_N} - {y_M};{z_N} - {z_M}) = (3 - 2;1 - 3;5 - 1) = (1; - 2;4)\).

Câu 12 :

Trong mặt phẳng tọa độ Oxyz, cho hai vecto \(\overrightarrow u  = \overrightarrow i  + 3\overrightarrow j  + 2\overrightarrow k \), \(\overrightarrow v  = 2\overrightarrow i  + \overrightarrow j  + 5\overrightarrow k \). Tích \(\overrightarrow u .\overrightarrow v \) bằng:

  • A

    0

  • B

    6

  • C

    15

  • D

    3

Đáp án : C

Phương pháp giải :

Sử dụng công thức tính tọa độ tích vô hướng của hai vecto.

Lời giải chi tiết :

Theo giả thiết, ta có: \(\overrightarrow u  = (1;3;2)\), \(\overrightarrow v  = (2;1;5)\).

Khi đó: \(\overrightarrow u .\overrightarrow v  = 1.2 + 3.1 + 2.5 = 15\).

Phần II: Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho hàm số f(x) xác định trên R\{3} có bảng biến thiên như sau:

a) Hàm số f(x) đồng biến trên mỗi khoảng xác định

Đúng
Sai

b) Số điểm cực trị của hàm số đã cho là 1

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất bằng 1

Đúng
Sai

d) Đồ thị hàm số f(x) có hai đường tiệm cận

Đúng
Sai
Đáp án của giáo viên lời giải hay

a) Hàm số f(x) đồng biến trên mỗi khoảng xác định

Đúng
Sai

b) Số điểm cực trị của hàm số đã cho là 1

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất bằng 1

Đúng
Sai

d) Đồ thị hàm số f(x) có hai đường tiệm cận

Đúng
Sai
Phương pháp giải :

Quan sát bảng biến thiên và nhận xét.

Lời giải chi tiết :

a) Sai. Hàm số f(x) nghịch biến trên mỗi khoảng xác định.

b) Sai. Hàm số không có điểm cực trị.

c) Sai. Hàm số f(x) không có giá trị lớn nhất.

d) Đúng. Đồ thị hàm số f(x) có hai đường tiệm cận là x = 3, y = 1.

Câu 2 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho hàm số \(f(x) = {x^4} - 10{x^2} - 4\).

a) Hàm số f(x) nghịch biến trên khoảng

Đúng
Sai

b) Hàm số có 3 điểm cực trị

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất trên đoạn [0;9] bằng -4

Đúng
Sai

d) Hàm số f(x) có giá trị nhỏ nhất trên đoạn [2;19] bằng -29

Đúng
Sai
Đáp án của giáo viên lời giải hay

a) Hàm số f(x) nghịch biến trên khoảng

Đúng
Sai

b) Hàm số có 3 điểm cực trị

Đúng
Sai

c) Hàm số f(x) có giá trị lớn nhất trên đoạn [0;9] bằng -4

Đúng
Sai

d) Hàm số f(x) có giá trị nhỏ nhất trên đoạn [2;19] bằng -29

Đúng
Sai
Phương pháp giải :

Lập bảng biến thiên và nhận xét.

Lời giải chi tiết :

\(f'(x) = 4{x^3} - 20x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = \sqrt 5 }\\{x =  - \sqrt 5  \notin [0;9]}\end{array}} \right.\)

Ta có: f(0) = -4; \(f(\sqrt 5 ) =  - 29\); f(9) = 5747.

a) Sai. Hàm số f(x) nghịch biến trên khoảng \((0;\sqrt 5 )\) và đồng biến trên khoảng \((\sqrt 5 ; + \infty )\).

b) Đúng. Hàm số có 3 điểm cực trị (\(x =  - \sqrt 5 \), x = 0, \(x = \sqrt 5 \)).

c) Sai. Hàm số f(x) có giá trị lớn nhất trên đoạn [0;9] bằng 5747.

d) Đúng. Hàm số f(x) có giá trị nhỏ nhất trên đoạn [2;19] bằng -29.

Câu 3 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Cho hình hộp ABCD.A’B’C’D’.

a) \(\overrightarrow {A'A}  =  - \overrightarrow {CC'} \)

Đúng
Sai

b) \(\overrightarrow {BA'}  = \overrightarrow {CD'} \)

Đúng
Sai

c) \(\overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'D'}  = \overrightarrow {A'C} \)

Đúng
Sai

d) \(\overrightarrow {C'C}  + \overrightarrow {AB}  + \overrightarrow {B'C'}  = 2\overrightarrow {A'C} \)

Đúng
Sai
Đáp án của giáo viên lời giải hay

a) \(\overrightarrow {A'A}  =  - \overrightarrow {CC'} \)

Đúng
Sai

b) \(\overrightarrow {BA'}  = \overrightarrow {CD'} \)

Đúng
Sai

c) \(\overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'D'}  = \overrightarrow {A'C} \)

Đúng
Sai

d) \(\overrightarrow {C'C}  + \overrightarrow {AB}  + \overrightarrow {B'C'}  = 2\overrightarrow {A'C} \)

Đúng
Sai
Phương pháp giải :

Sử dụng quy tắc cộng vecto, lý thuyết các vecto bằng nhau, vecto đối nhau, quy tắc hình hộp.

Lời giải chi tiết :

a) Đúng. Vì hai vecto \(\overrightarrow {A'A} \), \(\overrightarrow {CC'} \) ngược hướng và cùng độ dài.

b) Đúng. Vì hai vecto \(\overrightarrow {BA'} \), \(\overrightarrow {CD'} \) ngược hướng và cùng độ dài.

c) Đúng. Vì \(\overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'D'}  = \overrightarrow {A'C} \) theo quy tắc hình hộp).

d) Sai. Vì \(\overrightarrow {C'C}  + \overrightarrow {AB}  + \overrightarrow {B'C'}  = \overrightarrow {A'A}  + \overrightarrow {A'B'}  + \overrightarrow {A'D'}  = \overrightarrow {A'C} \) theo quy tắc hình hộp).

Câu 4 : Con hãy tích vào ô đúng hoặc sai cho mỗi câu (khẳng định) dưới đây.

Trong không gian Oxyz, cho vecto \(\overrightarrow a  = (2;1; - 2)\), \(\overrightarrow b  = (0; - 1;1)\).

a) \(\left| {\overrightarrow a } \right| = 3\)

Đúng
Sai

b) \(\overrightarrow a  + \overrightarrow b  = (2;0; - 1)\)

Đúng
Sai

c) \(\overrightarrow a .\overrightarrow b  =  - 1\)

Đúng
Sai

d) Góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({60^o}\)

Đúng
Sai
Đáp án của giáo viên lời giải hay

a) \(\left| {\overrightarrow a } \right| = 3\)

Đúng
Sai

b) \(\overrightarrow a  + \overrightarrow b  = (2;0; - 1)\)

Đúng
Sai

c) \(\overrightarrow a .\overrightarrow b  =  - 1\)

Đúng
Sai

d) Góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({60^o}\)

Đúng
Sai
Phương pháp giải :

Sử dụng các quy tắc cộng vecto, công thức tính tích vô hướng của hai vecto, độ dài vecto, góc giữa hai vecto.

Lời giải chi tiết :

a) Đúng. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{2^2} + {1^2} + {{( - 2)}^2}}  = 3\).

b) Đúng. Vì \(\overrightarrow a  + \overrightarrow b  = (2 + 0;1 - 1; - 2 + 1) = (2;0; - 1)\).

c) Sai. Vì \(\overrightarrow a .\overrightarrow b  = 2.0 + 1.( - 1) - 2.1 =  - 3\).

d) Sai. Vì \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 3}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} .\sqrt {{0^2} + {{( - 1)}^2} + {1^2}} }} = \frac{{ - \sqrt 2 }}{2}\] nên góc giữa hai vecto \(\overrightarrow a ,\overrightarrow b \) bằng \({135^o}\).

Phần III: Câu trắc nghiệm trả lời ngắn.
Thí sinh trả lời từ câu 1 đến câu 6.
Câu 1 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Giá trị lớn nhất của hàm số \(y = \sqrt {3 - 2x - {x^2}} \) bằng bao nhiêu?

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

- Tính y’, tìm các nghiệm của y’ = 0

- Tìm giá trị y tại các điểm cực trị của hàm số và hai đầu mút của đoạn.

Lời giải chi tiết :

Tập xác định: [-3;1].

Ta có: \(f'(x) = \frac{{ - 2 - 2x}}{{2\sqrt {3 - 2x - {x^2}} }} = \frac{{x + 1}}{{\sqrt {3 - 2x - {x^2}} }} = 0 \Leftrightarrow x =  - 1\).

f(-3) = 0; f(-1) = 2; f(1) = 0.

Vậy giá trị lớn nhất của hàm số là 2.

Câu 2 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Biết rằng đồ thị hàm số \(y = \frac{{(n - 3)x + n - 2017}}{{x + m + 3}}\) nhận trục hoành làm tiệm cận ngang và trục tung làm tiệm cận đứng. Khi đó, giá trị của m + n bằng bao nhiêu?

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

Sử dụng quy tắc tìm đường tiệm cận của hàm phân thức.

Lời giải chi tiết :

Đồ thị nhận trục hoành làm tiệm cận ngang, tức \(n - 3 = 0 \Leftrightarrow n = 3\).

Đồ thị nhận trục tung làm tiệm cận đứng, tức \( - m - 3 = 0 \Leftrightarrow m =  - 3\).

Vậy m + n = -3 + 3 = 0.

Câu 3 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Một em nhỏ cân nặng m = 25 kg trượt trên cầu trượt dài 3,5 m. Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là \({30^o}\). Độ lớn của trọng lực \(\overrightarrow P  = m\overrightarrow g \) tác dụng lên em nhỏ, cho biết vecto gia tốc rơi tự do \(\overrightarrow g \) có độ lớn là 9,8 \(m/{s^2}\). Công A (J) sinh bởi một lực \(\overrightarrow F \) có độ dịch chuyển \(\overrightarrow d \) được tính bởi công thức \(A = \overrightarrow F .\overrightarrow d \). Hãy tính công sinh bởi trong lực \(\overrightarrow P \) khi em nhỏ trượt hết chiều dài cầu trượt (làm tròn đến hàng đơn vị).

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

Sử dụng công thức tính tích vô hướng của hai vecto trong không gian.

Lời giải chi tiết :

Độ lớn trọng lực tác dụng lên em nhỏ là: P = m.g = 25.9,8 = 245 (N).

Góc giữa hai vecto \(\overrightarrow P \) và \(\overrightarrow d \) là: \(\widehat {CAB} = {90^o} - \widehat {ABC} = {90^o} - {30^o} = {60^o}\).

Ta có: \(A = \overrightarrow F .\overrightarrow d  = \overrightarrow P .\overrightarrow d  = Pd\cos \left( {\overrightarrow P ,\overrightarrow d } \right) = 245.3,5.\cos {60^o} = 428,75 \approx 429\) (J).

Câu 4 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau (như hình) để được một lăng trụ khuyết hai đáy.

Tìm giá trị của x để thể tích khối lăng trụ lớn nhất.

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

Thiết lập hàm số biểu diễn thể tích lăng trụ theo x. Lập bảng biến thiên và tìm giá trị lớn nhất của hàm số đó.

Lời giải chi tiết :

Ta có: DF = CH = x, FH = 30 – 2x. Suy ra chu vi tam giác DHF là p = 15.

Thể tích khối lăng trụ là: \(V = {S_{DHF}}.EF = 30\sqrt {15(15 - x)(15 - x)(15 - 30 + 2x)} \)

\( = 30\sqrt {15{{(15 - x)}^2}(2x - 15)} \), \(x \in \left( {\frac{{15}}{2};15} \right)\).

Xét hàm số \(f(x) = {(15 - x)^2}(2x - 15)\).

\(f'(x) =  - 2(15 - x)(2x - 15) + 2{(15 - x)^2} =  - 2(15 - x)(3x - 30)\)

\(f'(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 10}\\{x = 15}\end{array}} \right.\)

Dựa vào bảng biến thiên, thể tích lăng trụ lớn nhất khi x = 10 (cm).  

Câu 5 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Giả sử không gian ngoài vũ trụ được xét theo hệ tọa độ Oxyz, một phi thuyền ở ngoài không gian đang ở vị trí gốc tọa độ. Có 3 vệ tinh nhân tạo lần lượt ở 3 vị trí A(2500; 4700; -3600), B(3700; 1100; 2900), C(-5000; -4000; -7100), phi thuyền cần đến vị trí trọng tâm của 3 vệ tinh A, B, C để nhận và truyền tín hiệu đến các vệ tinh. Quãng đường mà phi thuyền cần di chuyển để đến được trọng tâm của 3 vệ tinh là bao nhiêu (làm tròn đến hàng đơn vị)?

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

Gọi điểm G là trọng tâm của tam giác ABC. Tính khoảng cách OG.

Lời giải chi tiết :

Gọi điểm G là trọng tâm của tam giác ABC.

Khi đó:

\(G\left( {\frac{{2500 + 3700 - 5000}}{3};\frac{{4700 + 1100 - 4000}}{3};\frac{{ - 3600 + 2900 - 7100}}{3}} \right) = \left( {400;600; - 2600} \right)\).

Phi thuyền đang ở vị trí gốc tọa độ, cần di chuyển đến vị trí trọng tâm G của 3 vệ tinh A, B, C nên quãng đường cần di chuyển bằng độ dài vecto \(\overrightarrow {OG}  = \left( {400;600; - 2600} \right)\).

Độ dài vecto \(\overrightarrow {OG} \) là \(\sqrt {{{400}^2} + {{600}^2} + {{( - 2600)}^2}}  \approx 2698\).

Câu 6 : Con hãy điền từ / cụm từ/ số thích hợp vào các ô trống

Dân số của một quốc gia sau t năm kể từ năm 2023 được ước tính bởi công thức \(N(t) = 100{e^{0,012t}}\) (N(t) được tính bằng triệu người), \(0 \le t \le 50\)). Đạo hàm của hàm số N(t) biểu thị tốc độ tăng trưởng dân số của quốc gia đó (tính bằng triệu người/năm). Vào năm nào tốc độ tăng trưởng dân số của quốc gia đó là 1,5 triệu người/năm?

Đáp án:

Đáp án của giáo viên lời giải hay

Đáp án:

Phương pháp giải :

Tìm N’(t) và giải phương trình N’(t) = 1,5.

Lời giải chi tiết :

Ta có: \(N'(t) = 100.0,012{e^{0,012t}} = 1,2{e^{0,012t}}\).

Tốc độ tăng trưởng dân số đạt 1,5 triệu người/năm tức là \(N'(t) = 1,5 \Leftrightarrow 1,2{e^{0,012t}} = 1,5 \Leftrightarrow t \approx 18,6\).

Vậy, vào năm 2023 + 18 = 2041, tốc độ tăng trưởng dân số của quốc gia đó là 1,5 triệu người/năm.


Mẹo tìm đáp án nhanh

Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365

Học tập cùng Learn Anything
Chủ đề:

Khái niệm về warmth: định nghĩa và ứng dụng trong cuộc sống, cùng với các nguồn cung cấp và đơn vị đo lường như nhiệt độ, ánh nắng mặt trời và lửa.

Protection - Khái niệm và tầm quan trọng trong bảo vệ an toàn thông tin. Bao gồm các loại Protection như Physical, Technical và Administrative, cùng với các phương pháp bảo vệ thông tin như mã hóa, chứng thực, phân quyền, kiểm soát truy cập và giám sát. Protection đóng vai trò quan trọng trong công tác bảo mật thông tin, bảo vệ an toàn thông tin và đảm bảo sự riêng tư của người dùng.

Khái niệm Symbol of Wealth và tác động của nó đến xã hội.

Khái niệm về Status và các loại Status trên mạng xã hội: trạng thái, cảm xúc, chia sẻ và kiến thức. Cách viết Status hấp dẫn và tương tác thông qua like, comment, share và tag trên mạng xã hội.

Khái niệm về luxurious clo và các ứng dụng của nó trong đời sống và công nghiệp"

Khái niệm về social standing và vai trò của nó trong xã hội

Ứng dụng của Mass Production Techniques trong công nghiệp ô tô và điện tử, sản phẩm gia dụng và tiêu dùng khác giúp tăng năng suất, giảm chi phí và cải thiện chất lượng sản phẩm thông qua quy trình sản xuất tiêu chuẩn hóa và tự động hóa. Các phương pháp sản xuất hàng loạt như chế tạo khối lượng lớn, dây chuyền sản xuất và sản xuất đồng bộ được áp dụng để tối ưu hóa quy trình sản xuất và đáp ứng nhu cầu của thị trường. Mass production techniques đã đóng góp vào sự phát triển của các ngành công nghiệp này.

Khái niệm về affordable và ứng dụng trong các lĩnh vực như nhà ở, giáo dục, y tế, vận tải và sản phẩm tiêu dùng. Tiêu chí đánh giá affordable bao gồm giá cả, chất lượng, tính tiện ích và sự tiếp cận của người tiêu dùng. Tổng quan về các chính sách hỗ trợ affordable của chính phủ và các tổ chức xã hội, bao gồm giảm giá, hỗ trợ tài chính và xây dựng cộng đồng.

Accessible - Khái niệm, tiêu chuẩn, công cụ hỗ trợ và thiết kế trang web và ứng dụng Accessible để đảm bảo truy cập được cho mọi người, bao gồm cả người có khuyết tật và người dùng khó khăn. Điều này bao gồm các tiêu chuẩn WCAG, các công cụ hỗ trợ như screen reader, phần mềm lấy nét và trình duyệt đọc màu, cùng với các kỹ thuật thiết kế Accessible như sử dụng thẻ HTML và thuộc tính ARIA.

Self-expression: Khái niệm, phương tiện và cách thức thể hiện trong việc tạo sự đa dạng và cá nhân hóa xã hội. Tác động tích cực đến sức khỏe tâm thần, giảm căng thẳng, tăng tự tin và cải thiện tâm trạng. Lựa chọn phương tiện thích hợp, phối hợp màu sắc và tạo phong cách riêng để thể hiện bản thân qua self-expression.

Xem thêm...
×