Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Gấu Xám
Biểu tượng cảm xúc
😃
☂️
🐱

SBT Toán 11 - Chân trời sáng tạo

Chương 8. Quan hệ vuông góc trong không gian - SBT Toán 11 CTST

Giải câu hỏi trắc nghiệm trang 74, 75 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Trong không gian, khẳng định nào sau đây đúng? A. Cho hai đường thẳng song song, B. Trong không gian, C. Hai đường thẳng phân biệt vuông góc với nhau thì chúng cắt nhau. D. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba
Giải bài 1 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh a, \(SA \) \( = a\sqrt 3 \) và vuông góc với đáy. Xác định và tính góc giữa:
Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).
Giải bài 1 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện ABCD có tam giác BCD vuông cân tại B và \(AB \bot \left( {BCD} \right)\). Cho biết \(BC = a\sqrt 2 ,AB = \frac{a}{{\sqrt 3 }}\).
Giải bài 1 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy là hình vuông tâm O cạnh \(a\sqrt 2 \). Biết rằng \(SA = SB = SC = SD,SO = 2a\sqrt 2 \).
Giải bài 1 trang 50 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Tính góc giữa AB và DM.
Giải bài 1 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. a) \(BC \bot \left( {OAH} \right)\). b) H là trực tâm của \(\Delta ABC\). c) \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}\).
Giải bài 2 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 3. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm I của cạnh AB.
Giải bài 2 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của SC.
Giải bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a. Cho biết \(SA = a\) và \(SA \bot \left( {ABCD} \right)\).
Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện ABCD có \(AB \bot CD\) và \(AC \bot BD\). Gọi H là hình chiếu vuông góc của A xuống mặt phẳng (BCD).
Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \(SA = a\sqrt 3 ,SA \bot AC,\) \(SA \bot BC,\) \(\widehat {BAD} = {120^0}\).
Giải bài 2 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC). b) Gọi O và H là trực tâm \(\Delta BCD\) và \(\Delta ACD\).
Giải bài 3 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng \(\frac{{a\sqrt {15} }}{6}\). Tính số đo góc phẳng nhị diện \(\left[ {S,BC,A} \right]\).
Giải bài 3 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’. Tính khoảng cách giữa hai đường thẳng MN và B’D’.
Giải bài 3 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và \(SA \bot \left( {ABC} \right)\).
Giải bài 3 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện ABCD có \(DA \bot \left( {ABC} \right)\), ABC là tam giác cân tại A. Gọi M là trung điểm của BC. Vẽ \(AH \bot MD\) tại H.
Giải bài 3 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện ABCD có \(AB = CD,AC = BD,AD = BC\). a) Chứng minh đoạn nối các trung điểm của các cặp cạnh đối thì vuông góc hai cạnh đó.
Giải bài 3 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S. ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H thuộc cạnh AB sao cho \(HA = 2HB\).
Giải bài 4 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\). Tam giác ABC vuông tại A, \(\widehat {ABC} \) \( = {30^0}\), \(AC \) \( = a,SA \) \( = \frac{{a\sqrt 3 }}{2}\).
Giải bài 4 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình tứ diện đều ABCD có cạnh bằng \(\sqrt {11} \). Gọi I là trung điểm của cạnh CD. Tính khoảng cách giữa hai đường thẳng AC và BI.
Giải bài 4 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD).
Giải bài 4 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy là hình thoi, O là giao điểm của hai đường chéo, \(SA = SC,SB = SD\).
Giải bài 4 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp tứ giác S.ABCD có tất cả các cạnh đều bằng a. Gọi M, N, I, J lần lượt là trung điểm của SA, SD, SC và BC. Tính các góc giữa các đường thẳng sau:
Giải bài 4 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right)\), tam giác ABC có độ dài 3 cạnh là \(AB = 5a,BC = 8a,AC = 7a\), góc giữa SB và (ABC) là \({45^0}\). Tính thể tích khối chóp S.ABC.
Giải bài 5 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp tam giác S.ABC có tam giác ABC vuông cân tại B, \(AC = a\sqrt 2 \), mặt phẳng (SAC) vuông góc với mặt đáy (ABC).
Giải bài 5 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, \(SA = a\sqrt 3 \). Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt đáy.
Giải bài 5 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho tứ diện đều ABCD cạnh a. Gọi O là tâm đường tròn ngoại tiếp tam giác BCD. Chứng minh rằng hai đường thẳng OA và CD vuông góc với nhau.
Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B. Biết \(AB = a,BC = a\sqrt 3 \),
Giải bài 6 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp S. ABCD có SA vuông góc với mặt phẳng (ABCD) và \(SA = a\sqrt 3 \), đáy ABCD là hình thang vuông tại A và B có \(AB = a,AD = 3a,BC = a\).
Giải bài 6 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Người ta cần sơn tất cả các mặt của một khối bê tông hình chóp cụt tứ giác đều, đáy lớn có cạnh bằng 2m, đáy nhỏ có cạnh bằng 1m và cạnh bên bằng 2m (Hình 14). Tính tổng diện tích các bề mặt cần sơn.
Giải bài 6 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân với \(AB = AC = a,\widehat {BAC} = {120^0}\),
Giải bài 7 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng a. Biết \(d\left( {A,\left( {A'BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\). Tính \({V_{ABC.A'B'C'}}\).
Giải bài 7 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Một hộp đèn treo trần có hình dạng lăng trụ đứng lục giác đều (Hình 15), cạnh đáy bằng 10cm và cạnh bên bằng 50cm. Tính tỉ số giữa diện tích xung quanh và diện tích một mặt đáy của hộp đèn.
Giải bài 7 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh 2a. Mặt phẳng (B’AC) tạo với đáy một góc \({30^0}\), khoảng cách từ B đến mặt phẳng (D’AC) bằng \(\frac{a}{2}\). Tính thể tích khối tứ diện ACB’D’.
Giải bài 8 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Một hình hộp chữ nhật ABCD.A’B’C’D’ có ba kích thước 2cm, 3cm và 6cm. Tính thể tích của khối tứ diện ACB’D’.
Giải bài 8 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Một thùng đựng rác có dạng hình chóp cụt tứ giác đều. Đáy và miệng thùng có độ dài lần lượt là 60cm và 120cm, cạnh bên của thùng dài 100cm. Tính thể tích của thùng.
Giải bài 9 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Cho hình chóp cụt tam giác đều ABC.A’B’C’ có đường cao \(HH' = 2a\). Cho biết \(AB = 2a,A'B' = a\). Gọi \({B_1},{C_1}\) lần lượt là trung điểm của AB, AC. Tính thể tích của:
Giải bài 10 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Tính thể tích của một cái sọt đựng đồ có dạng hình chóp cụt tứ giác đều, đáy lớn có cạnh bằng 80cm, đáy nhỏ có cạnh bằng 40cm và cạnh bên bằng 80cm.
×