Bài 2. Phương trình đường thẳng - Toán 12 Cánh diều
Giải bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều
Giải bài tập 11 trang 80 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 9 trang 79 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 8 trang 79 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 5 trang 78, 79 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 4 trang 78 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 3 trang 78 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 2 trang 78 SGK Toán 12 tập 2 - Cánh diều Giải bài tập 1 trang 78 SGK Toán 12 tập 2 - Cánh diều Giải mục 3 trang 71, 72, 73, 74, 75 SGK Toán 12 tập 2 - Cánh diều Giải mục 2 trang 69, 70, 71 SGK Toán 12 tập 2 - Cánh diều Giải mục 1 trang 65, 66, 67, 68, 69 SGK Toán 12 tập 2 - Cánh diều Lý thuyết Phương trình đường thẳng Toán 12 Cánh DiềuGiải bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều
Đề bài
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là S(0;0;a√32),A(a2;0;0),B(−a2;0;0),C(−a2;a;0),D(a2;a;0) với a>0 (Hình 36).
a) Xác định tọa độ của các vectơ →SA,→CD. Từ đó tính góc giữa hai đường thẳng SA và CD (làm tròn kết quả đến hàng đơn vị của độ).
b) Chỉ ra một vectơ pháp tuyến của mặt phẳng (SAC). Từ đó tính góc đường thẳng SD và mặt phẳng (SAC) (làm tròn kết quả đến hàng đơn vị của độ).
Mẹo tìm đáp án nhanh
Search Google: "từ khóa + baitap365" Ví dụ: "Bài 5 trang 13 SGK Vật lí 12 baitap365