Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

SGK Toán 11 - Cùng khám phá

Chương 3. Giới hạn. Hàm số liên tục Toán 11 Cùng khám phá

Lý thuyết Hàm số liên tục - SGK Toán 11 Cùng khám phá
I. Hàm số liên tục tại một điểm và liên tục trên một khoảng
Lý thuyết Giới hạn của hàm số - SGK Toán 11 Cùng khám phá
I. Giới hạn của hàm số tại một điểm
Lý thuyết Giới hạn của dãy số - SGK Toán 11 Cùng khám phá
I. Giới hạn hữu hạn của dãy số
Giải mục 3 trang 69, 70, 71, 72, 73 SGK Toán 11 tập 1 - Cùng khám phá
Cho hàm số \(y = f(x) = \frac{1}{x}\)
Bài 3.14 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn sau:
Giải mục 1 trang 81, 82 SGK Toán 11 tập 1 - Cùng khám phá
Dòng 1 của bảng dưới đây cho biết biểu thức của một hàm số. Dòng 2 cho biết đồ thị của hàm số đã cho. Trả lời các câu hỏi ở dòng 3 và 4
Giải mục 1 trang 59, 60, 61, 62 SGK Toán 11 tập 1 - Cùng khám phá
Cho dãy số (({u_n})) được xác định bởi ({u_n} = frac{1}{n})
Giải mục 2 trang 67, 68, 69 SGK Toán 11 tập 1 - Cùng khám phá
Cho hàm số (f(x) = left{ begin{array}{l}x + 2,x ge 1\x - 4,x < 1end{array} right.) và hai dãy số (({u_n})) và (({v_n})) với ({u_n} = 1 + frac{1}{n}), ({v_n} = 1 - frac{1}{n})
Bài 3.15 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Vị trí ban đầu của một chất điểm trên trục \(Ox\) cách gốc tọa độ \(50cm\) về phía phải. Nó bắt đầu chuyển động trên trục \(Ox\) theo hướng dương.
Giải mục 2 trang 83, 84 SGK Toán 11 tập 1 - Cùng khám phá
Các hàm số \(f\left( x \right) = {x^3} - 3x + 2\) và \(g\left( x \right) = \sin x\) xác định trên \(\left( { - \infty ; + \infty } \right)\) có đồ thị như sau:
Giải mục 2 trang 62, 63, 64 SGK Toán 11 tập 1 - Cùng khám phá
Cho dãy số chính phương (({u_n})) với ({u_n} = {n^2})
Giải mục 1 trang 65, 66, 67 SGK Toán 11 tập 1 - Cùng khám phá
Cho dãy số (left( {{x_n}} right)) với ({x_n} = 1 + frac{1}{n}). Xét hàm số (f(x) = {x^2} - 2x)
Bài 3.16 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Tính tổng của các cấp số nhân lùi vô hạn sau
Bài 3.11 trang 79 SGK Toán 11 tập 1 - Cùng khám phá
Xét tính liên tục của các hàm số sau đây tại điểm \({x_0} = 3\).
Bài 3.1 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn:
Bài 3.6 trang 73 SGK Toán 11 tập 1 - Cùng khám phá
Dùng định nghĩa để tính các giới hạn sau:
Bài 3.17 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn:
Bài 3.12 trang 79 SGK Toán 11 tập 1 - Cùng khám phá
Hãy xác định các khoảng mà trên đó mỗi hàm số sau đây là liên tục
Bài 3.2 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn:
Bài 3.7 trang 74 SGK Toán 11 tập 1 - Cùng khám phá
Tính các giới hạn sau:
Bài 3.18 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn
Bài 3.13 trang 79 SGK Toán 11 tập 1 - Cùng khám phá
Trong Vật lí, tỉ số giữa tốc độ c của ánh sáng trong chân không và của tốc độ v của ánh sáng trong một môi trường được gọi là chiết suất của môi trường đó. Chiết suất của một môi trường đồng nhất là không đổi.
Bài 3.3 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Tính tổng của cấp số nhân lùi vô hạn:
Bài 3.8 trang 74 SGK Toán 11 tập 1 - Cùng khám phá
Tìm các giới hạn sau:
Bài 3.19 trang 80 SGK Toán 11 tập 1 - Cùng khám phá
Xét tính liên tục của các hàm số sau đây tại điểm \({x_0}\):
Bài 3.4 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Người ta thả một viên bi lăn trong một khe thẳng trên mặt phẳng.
Bài 3.9 trang 74 SGK Toán 11 tập 1 - Cùng khám phá
Cho hàm số
Bài 3.20 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Cho hàm số\(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^3} - 1}}{{x - 1}}\,\,\,khi\,\,x \ne 1\\\,\,\,\,\,\,\,\,\,a\,\,\,khi\,\,x = 1\end{array} \right.\). Hàm số \(y = f\left( x \right)\) liên tục tại \({x_0} = 1\) khi
Bài 3.5 trang 64 SGK Toán 11 tập 1 - Cùng khám phá
Một khinh khí cầu ( hình 3.2) bay cao 200m ở phút đầu tiên sau khi được thả. Mỗi phút tiếp theo, nó bay cao thêm độ cao bằng một nửa độ cao bay được ở phút trước đó. Khinh khí cầu có thể đạt độ cao 400 m hay không?
Bài 3.10 trang 74 SGK Toán 11 tập 1 - Cùng khám phá
Một thấu kính hội tụ có tiêu cự f= 30 cm. Trong Vật lí, ta biết rằng nếu đặt vật thật AB cách quang tâm của thấu kính một khoảng d (cm) > 30 (cm) thì được ảnh thật A’B’ của thấu kính một khoảng d’ (cm) ( Hình 3.5).
Bài 3.21 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{4x - 4}}{{x - 2}}\) là
Bài 3.22 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
\(\mathop {\lim }\limits_{x \to - \infty } \frac{{2 - x + {x^2}}}{x}\) là
Bài 3.23 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Tổng của cấp số nhân lùi vô hạn \(\left( {{u_n}} \right)\) là 5. Nếu công bội của cấp số nhân là \(q = \frac{2}{3}\) thì số hạng đầu là
Bài 3.24 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{1 + 2 + ... + n}}{{n + 2}} - \frac{n}{2},\,\forall x \in {\mathbb{N}^*}\) có giới hạn là
Bài 3.25 trang 81 SGK Toán 11 tập 1 - Cùng khám phá
\(\lim \frac{{{4^n} - {5^n}}}{{{2^n}{{.3}^n}}}\) là
×