Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

SBT Toán 12 - Chân trời sáng tạo

Chương 1. Ứng dụng đạo hàm để khảo sát hàm số - SBT Toán 12 Chân trời sáng tạo

Giải bài 1 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Hàm số \(y = f\left( x \right)\) trong Hình 1 nghịch biến trên khoảng nào? A. \(\left( { - 2;1} \right)\). B. \(\left( { - 4; - 2} \right)\). C. \(\left( { - 1;3} \right)\). D. \(\left( {1;3} \right)\).
Giải bài 1 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = xleft( {{x^2} - 4x} right)); b) (y = - {x^3} + 3{x^2} - 2).
Giải bài 1 trang 21 sách bài tập toán 12 - Chân trời sáng tạo
Tìm các tiệm cận của đồ thị hàm số sau:
Giải bài 1 trang 16 sách bài tập toán 12 - Chân trời sáng tạo
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đồ thị được cho ở Hình 2.
Giải bài 1 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Tìm các khoảng đơn điệu và cực trị của các hàm số có đồ thị cho ở Hình 3.
Giải bài 2 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Hàm số \(y = f\left( x \right)\) trong Hình 1 có bao nhiêu điểm cực trị? A. 2. B. 3. C. 4. D. 5.
Giải bài 2 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = \left( {m - 1} \right){x^3} + 2\left( {m + 1} \right){x^2} - x + m - 1\) (\(m\) là tham số). a) Khảo sát và vẽ đồ thị của hàm số khi \(m = - 1\). b) Tìm giá trị của \(m\) để tâm đối xứng của đồ thị hàm số có hoành độ \({x_0} = - 2\).
Giải bài 2 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Tìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{x - 5}}{{2{rm{x}} + 1}}); b) (y = frac{{2{rm{x}}}}{{x - 3}}); c) (y = - frac{6}{{3{rm{x}} + 2}}).
Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\); b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\); c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\); d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\); e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).
Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = - {x^3} - 3{x^2} + 24x - 1); b) (y = {x^3} - 8{x^2} + 5x + 2); c) (y = {x^3} + 2{x^2} + 3x + 1); d) (y = - 3{x^3} + 3{x^2} - x + 2).
Giải bài 3 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Giá trị nhỏ nhất của hàm số \(y = f\left( x \right)\) trên đoạn \(\left[ {0;4} \right]\) trong Hình 1 là: A. ‒1. B. ‒2. C. 0. D. 1.
Giải bài 3 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = 2{x^3} + 6{x^2} - x + 2\). Viết phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của nó.
Giải bài 3 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Tìm các tiệm cận của đồ thị hàm số sau: a) (y = 2{rm{x}} + 1 + frac{1}{{x - 3}}); b) (y = frac{{ - 3{{rm{x}}^2} + 16{rm{x}} - 3}}{{x - 5}}); c) (y = frac{{ - 6{x^2} + 7{rm{x}} + 1}}{{3{rm{x}} + 1}}).
Giải bài 3 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = \frac{{2{\rm{x}} + 1}}{{{\rm{x}} - 3}}\) trên nửa khoảng \(\left( {3;4} \right]\); b) \(y = \frac{{3{\rm{x}} + 7}}{{2{\rm{x}} - 5}}\) trên nửa khoảng \(\left[ { - 5;\frac{5}{2}} \right)\); c) \(y = \frac{{3{\rm{x}} + 2}}{{x + 1}}\) trên đoạn \(\left[ {0;4} \right]\).
Giải bài 3 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}); b) (y = frac{{2{rm{x}} - 5}}{{3{rm{x}} + 1}}); c) (y = sqrt {4 - {x^2}} ); d) (y = x - ln {rm{x}}).
Giải bài 4 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số (y = frac{{{x^2} - 2{rm{x}} + 1}}{{{rm{x}} - 2}}). Khi đó A. Hàm số đồng biến trên các khoảng (left( { - infty ;1} right)) và (left( {3; + infty } right)). B. Hàm số đồng biến trên các khoảng (left( { - 1;2} right)) và (left( {2;3} right)). C. Hàm số đồng biến trên (left( { - infty ;2} right)). D. Hàm số đồng biến trên (left( {1; + infty } right)).
Giải bài 4 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Với giá trị nào của \(m\) thì đồ thị của hàm số \(y = - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?
Giải bài 4 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Tìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{{x^2} + 2}}{{{x^2} + 2x - 3}}); b) (y = sqrt {{x^2} - 16} ).
Giải bài 4 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = frac{{4{{rm{x}}^2} - 2{rm{x}} + 9}}{{2{rm{x}} - 1}}) trên khoảng (left( {1; + infty } right)); b) (y = frac{{{x^2} - 2}}{{2{rm{x}} + 1}}) trên nửa khoảng (left[ {0; + infty } right)); c) (y = frac{{9{{rm{x}}^2} + 3{rm{x}} + 7}}{{3{rm{x}} - 1}}) trên nửa khoảng (left( {frac{1}{3};5} right]); d) (y = frac{{2{{rm{x}}^2} + 3{rm{x}} - 3}}{{2{rm{x}} + 5}}) trên đoạn (left[ { - 2;4} right]
Giải bài 4 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = frac{{{x^2} + 8}}{{x + 1}}); b) (y = frac{{{x^2} - 8x + 10}}{{x - 2}}); c) (y = frac{{ - 2{x^2} + x + 2}}{{2x - 1}}); d) (y = frac{{ - {x^2} - 6x - 25}}{{x + 3}}).
Giải bài 5 trang 33 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = {x^3} + 4{x^2} - 3x + 4\). Khi đó A. Hàm số đạt cực đại tại \(x = \frac{1}{3}\), giá trị cực đại là \(\frac{{94}}{{27}}\). B. Hàm số đạt cực đại tại \(x = - 3\), giá trị cực đại là 22. C. Hàm số đạt cực đại tại \(x = 0\), giá trị cực đại là 4. D. Hàm số không có cực đại.
Giải bài 5 trang 31 sách bài tập toán 12 - Chân trời sáng tạo
Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = 3 + frac{1}{x}); b) (y = 2 - frac{1}{{1 + x}}).
Giải bài 5 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Chi phí để làm sạch \(p\% \) lượng dầu loang từ một sự cố trên biển có thể được xấp xỉ bởi công thức \(C\left( p \right) = \frac{{2000p}}{{100 - p}}\) (tỉ đồng). a) Tính chi phí để làm sạch 95%, 96%, 97%, 98% và 99% lượng dầu loang. b) Tìm các tiệm cận của đồ thị hàm số \(C\left( p \right)\).
Giải bài 5 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) (y = sqrt { - {x^2} + 9} ); b) (y = frac{{x + 1}}{{{x^2} + 2{rm{x}} + 10}}).
Giải bài 5 trang 10 sách bài tập toán 12 - Chân trời sáng tạo
Tìm (m) để a) Hàm số (y = frac{{2{rm{x}} + m}}{{{rm{x}} - 1}}) đồng biến trên từng khoảng xác định. b) Hàm số (y = frac{{ - {x^2} + 3{rm{x}} + m}}{{{rm{x}} + 2}}) nghịch biến trên từng khoảng xác định.
Giải bài 6 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 2. Điểm cực tiểu của hàm số \(y = f\left( x \right)\) là A. \(x = - 3\). B. \(x = - 1\). C. \(x = 0\). D. \(x = 1\).
Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\). a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\). Từ đó, chứng minh rằng hai đ
Giải bài 6 trang 22 sách bài tập toán 12 - Chân trời sáng tạo
Hằng tháng, một công ty chuyên sản xuất mặt hàng A phải trả chi phí cố định là 50 triệu đồng (để thuê mặt bằng và lương nhân viên) và chi phí cho nguyên liệu là (10000x) (đồng) với (x) là số lượng sản phẩm A được nhập về. a) Viết công thức tính chi phí trung bình (overline C left( x right)) mà công ty cần chi để sản xuất một sản phẩm. b) Tìm các tiệm cận của đồ thị hàm số (overline C left( x right)).
Giải bài 6 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Một chất điểm chuyển động theo phương ngang có toạ độ xác định bởi phương trình \(x\left( t \right) = - 0,01{t^4} + 0,12{t^3} + 0,3{t^2} + 0,5\) với \(x\) tính bằng mét, \(t\) tính bằng giây, \(0 \le t \le 6\). Tìm thời điểm mà tốc độ của chất điểm lớn nhất.
Giải bài 6 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Đạo hàm (f'left( x right)) của hàm số (y = fleft( x right)) có đồ thị như Hình 4. Xét tính đơn điệu và tìm các điểm cực trị của hàm số (y = fleft( x right)).
Giải bài 7 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Đồ thị đạo hàm \(f'\left( x \right)\) của hàm số \(y = f\left( x \right)\) được cho trong Hình 3. Hàm số \(y = f\left( x \right)\) đồng biến trên các khoảng A. \(\left( { - 4; - 2} \right)\) và \(\left( { - 2;2} \right)\). B. \(\left( { - 2;0} \right)\). C. \(\left( { - 4; - 3} \right)\) và \(\left( { - 1;2} \right)\). D. \(\left( { - 3; - 1} \right)\) và \(\left( {1;2} \right)\).
Giải bài 7 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.
Giải bài 7 trang 17 sách bài tập toán 12 - Chân trời sáng tạo
Cho \(a\) và \(b\) là hai số không âm và có tổng bằng 4. Tìm giá trị nhỏ nhất của \({a^4} + {b^4}\).
Giải bài 7 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Chứng minh rằng a) (tan x > x) với mọi (x in left( {0;frac{pi }{2}} right)); b) (ln x le x - 1) với mọi (x > 0).
Giải bài 8 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = {x^3} - 12{\rm{x}} + 6\). Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 3;3} \right]\) là A. 6. B. 15. C. 17. D. 22.
Giải bài 8 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{{rm{x}} - 1}}); b) (y = - 2{rm{x}} + frac{1}{{2{rm{x}} + 1}}).
Giải bài 8 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Từ một miếng bìa hình vuông có cạnh bằng 12 cm, người ta cắt bỏ đi bốn hình vuông nhỏ có cạnh bằng (x) (cm) ở bốn góc (Hình 3a) và gấp lại thành một hình hộp không nắp (Hình 3b). Tìm (x) để thể tích của hình hộp là lớn nhất.
Giải bài 8 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Chứng minh rằng: a) Phương trình \({x^3} + 5{x^2} - 8{\rm{x}} + 4 = 0\) có duy nhất một nghiệm. b) Phương trình \( - {x^3} + 3{x^2} + 24x - 1 = 0\) có ba nghiệm phân biệt.
Giải bài 9 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên.
Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\) a) Tìm toạ độ giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). So sánh các tung độ \({y_M}\) và \({y_{M'}}\). Từ đó, suy ra rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).
Giải bài 9 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Cho tam giác (ABC) cân tại (A) nội tiếp trong đường tròn tâm (O), bán kính 1 cm. Đặt (widehat A = alpha left( {0 < alpha < pi } right)). a) Viết biểu thức tính diện tích (S) của tam giác (ABC) theo (alpha ). b) Tìm diện tích lớn nhất của tam giác (ABC).
Giải bài 9 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Tìm \(m\) để phương trình \(\frac{{{x^2} + x + 4}}{{x + 1}} = m\) có hai nghiệm phân biệt.
Giải bài 10 trang 34 sách bài tập toán 12 - Chân trời sáng tạo
Đồ thị hàm số \(y = \frac{{ - 4{\rm{x}} + 3}}{{2{\rm{x}} + 2}}\) có tâm đối xứng là điểm: A. \(\left( { - 1; - 2} \right)\). B. \(\left( { - 2; - 1} \right)\). C. \(\left( { - 1; - 1} \right)\). D. \(\left( { - 2; - 2} \right)\).
Giải bài 10 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = \frac{{\left( {m - 1} \right)x - 2}}{{m - 2 - x}}\) (\(m\) là tham số). Tìm điều kiện của \(m\) để đồ thị hàm số đã cho có một nhánh nằm hoàn toàn trong góc phần tư thứ nhất của hệ trục toạ độ \(Oxy\).
Giải bài 10 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Cho hình thang cân có đáy nhỏ và hai cạnh bên bằng nhau và bằng 5. Tìm diện tích lớn nhất của hình thang cân đó.
Giải bài 10 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Một chất điểm chuyển động lên, xuống theo phương thẳng đứng. Độ cao \(h\left( t \right)\) của chất điểm tại thời điểm \(t\) (giây) được cho bởi công thức \(h\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 12t + 1\) với \(0 \le t \le 8\). a) Viết công thức tính vận tốc của chất điểm. b) Trong khoảng thời gian nào chất điểm chuyển động lên, trong thời gian nào chất điểm chuyển động đi xuống?
Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hàm số (y = 2{x^3} - 5{x^2} - 24x - 18). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại (x = - frac{4}{3}), giá trị cực đại là (frac{{10}}{{27}}). c) Hàm số đồng biến trong khoảng (left( {3; + infty } right)). d) Hàm số đồng biển trong khoảng (left( { - frac{4}{3};3} right)).
Giải bài 11 trang 32 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số (y = frac{{{x^2} + 2{rm{x}} - m}}{{x - 1}}) ((m) là tham số). a) Tìm (m) để đồ thị hàm số đã cho có hai điểm cực trị. b) Chứng tỏ rằng khi (m = 2), hàm số có hai điểm cực trị. Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số này.
Giải bài 11 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Trong một ngày, tổng chi phí để một xưởng sản xuất \(x\) (kg) thành phẩm được cho bởi hàm số \(C\left( x \right) = 2{x^3} - 30{x^2} + 177x + 2592\) (nghìn đồng). Biết giá bán mỗi kilôgam thành phẩm là 513 nghìn đồng và công suất tối đa của xưởng là 20 kg trong một ngày. Khối lượng thành phẩm xưởng nên sản xuất trong một ngày là bao nhiêu để lợi nhuận thu được của xưởng trong một ngày là cao nhất?
Giải bài 11 trang 11 sách bài tập toán 12 - Chân trời sáng tạo
Độ cao (tính bằng mét) của tàu lượn siêu tốc so với mặt đất sau \(t\)(giây) \(\left( {0 \le t \le 20} \right)\) từ lúc bắt đầu được cho bởi công thức \(h\left( t \right) = - \frac{4}{{255}}{t^3} + \frac{{49}}{{85}}{t^2} - \frac{{98}}{{17}}t + 20\). Trong khoảng thời gian nào tàu lượn đi xuống, trong khoảng thời gian nào tàu lượn đi lên?
Giải bài 12 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Hàm số (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}) có các tiệm cận là a) (x = 2). b) ({rm{x}} = 3). c) ({rm{y}} = 2). d) ({rm{y}} = 3).
Giải bài 12 trang 18 sách bài tập toán 12 - Chân trời sáng tạo
Giá bán \(P\) (đồng) của một sản phẩm thay đổi theo số lượng \(Q\) sản phẩm \(\left( {0 \le Q \le 1500} \right)\) được cung cấp ra thị trường theo công thức \(P = \sqrt {1500 - Q} \). Tính số lượng sản phẩm nên được cung cấp ra thị trường để doanh thu \(R = PQ\) lớn nhất.
Giải bài 12 trang 12 sách bài tập toán 12 - Chân trời sáng tạo
Cho điểm \(A\) di động trên nửa đường tròn tâm \(O\) đường kính \(MN = 20{\rm{ }}cm,\widehat {MOA} = \alpha \) với \(0 \le \alpha \le \pi \). Lấy điểm \(B\) thuộc nửa đường tròn và \(C,D\) thuộc đường kính \(MN\) được xác định sao cho \(ABCD\) là hình chữ nhật. Khi \(A\) di động từ trái sang phải, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) tăng, trong các khoảng nào của \(\alpha \) thì diện tích của hình chữ nhật \(ABCD\) giảm?
Giải bài 13 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức (Pleft( q right) = - {q^3} + 24{q^2} + 780q - 5000) (nghìn đồng) trong đó (q) (kg) là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất được tối đa 50 kg sản phẩm trong một tuần. a) Xưởng sản xuất càng nhiều thì lợi nhuận càng cao. b) Lợi nhuận lớn nhất khi xưởng sản xuất 26 kg sản phẩm trong một tuần. c) Sau khi sản xuất được 26 kg sản phẩm, càng sản xuất
Giải bài 13 trang 12 sách bài tập toán 12 - Chân trời sáng tạo
Người ta thấy rằng trong vòng 3 năm tính từ đầu năm 2020, giá thành (P) của một loại sản phẩm vào tháng thứ (t) thay đổi theo công thức (Pleft( t right) = 80{t^3} - 3600{t^2} + 48000t + 100000) (đồng) với (0 le t le 36). Hãy cho biết trong khoảng thời gian nào giá thành sản phẩm tăng, trong khoảng thời gian nào giá thành sản phẩm giảm. Giá thành đạt cực đại và cực tiểu vào thời điểm nào?
Giải bài 14 trang 35 sách bài tập toán 12 - Chân trời sáng tạo
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Đồ thị hàm số (y = frac{{{x^2} - 2{rm{x}}}}{{x + 1}}) có hai trục đối xứng là hai đường phân giác của các góc tạo bởi hai đường thẳng: a) (x = 1) và (y = x - 3). b) (x = 1) và (y = - x + 3). c) (x = - 1) và (y = x - 3). d) (x = - 1) và (y = x + 3).
Giải bài 14 trang 12 sách bài tập toán 12 - Chân trời sáng tạo
Một cửa hàng ước tính số lượng sản phẩm \(q\left( {0 \le q \le 100} \right)\) bán được phụ thuộc vào giá bán \(p\) (tính bằng nghìn đồng) theo công thức \(p + 2q = 300\). Chi phí cửa hàng cần chi để nhập về \(q\) sản phẩm là \(C\left( q \right) = 0,05{q^3} - 5,7{q^2} + 295q + 300\) (nghìn đồng). a) Viết công thức tính lợi nhuận \(I\) của cửa hàng khi nhập về và bán được \(q\) sản phẩm. b) Trong khoảng nào của \(q\) thì lợi nhuận sẽ tăng khi \(q\) tăng, trong khoảng nào thì lợi nhuận giảm kh
Giải bài 1 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Giá thành của một sản phẩm trong 6 tháng đầu năm thay đổi theo công thức (Pleft( t right) = 2{t^3} - 33{t^2} + 168t + 137) với (P) tính bằng nghìn đồng và (t) là số tháng tính từ đầu năm. Trong khoảng thời gian nào thì giá của sản phẩm tăng?
Giải bài 2 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Người ta muốn làm một chiếc hộp hình hộp chữ nhật có đáy hình vuông và thể tích là \(10l\), Diện tích toàn phần nhỏ nhất của hộp là bao nhiêu?
Giải bài 3 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số \(y = f\left( x \right) = \frac{{m + 2}}{3}{x^3} + 2{x^2} + \left( {m + 2} \right)x + 1\) (\(m\) là tham số). Tìm \(m\) để đồ thị hàm số không có cực trị.
Giải bài 4 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Tìm toạ độ tâm đối xứng (I) của đồ thị hàm số sau theo tham số (m): (y = fleft( x right) = left( {2 - m} right){x^3} - 3{x^2} + 2). Chứng tỏ khi (m) thay đổi, (I) luôn thuộc một parabol xác định.
Giải bài 5 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Cho hàm số (y = fleft( x right) = frac{{{x^2} + 2{rm{x}} - m}}{{{rm{x}} - 1}}) ((m) là tham số). Tìm (m) để đồ thị hàm số đã cho có hai cực trị.
Giải bài 6 trang 36 sách bài tập toán 12 - Chân trời sáng tạo
Nam dùng một tấm bìa có kích thước 50 cm × 20 cm để làm một chiếc lon hình trụ (không có nắp). Hỏi cần chọn bán kính đáy hình trụ là bao nhiêu xăngtimét thì lon hình trụ đạt thể tích lớn nhất? Lưu ý: Kết quả làm tròn đến hàng phần trăm của xăngtimét, bỏ qua phần hao hụt khi cắt và tạo hình, đáy và mặt bên phải là các bìa nguyên vẹn (không ghép nối).
Giải bài 7 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
Một chủ nhà hàng kinh doanh phần ăn đồng giá có chiến lược kinh doanh nhur sau: • Phí cố định được ước tính trong một năm là 50000 nghìn đồng. • Chi phí một phần ăn ước tính khoảng 22 nghìn đồng. • Giá niêm yết trên thực đơn là 30 nghìn đồng. Trong bài này, giả định rằng tất cả các phần ăn chế biến sẵn đều được bán hết và kí hiệu (x) là số phần ăn phục vụ trong một năm, giả sử (x) thuộc khoảng (left[ {5000;25000} right]). a) Gọi (Cleft( x right)) là tổng chi phí hằng năm ch
Giải bài 8 trang 37 sách bài tập toán 12 - Chân trời sáng tạo
Người ta muốn chế tạo một chiếc hộp hình hộp chữ nhật có thể tích 800 cm với yêu cầu dùng ít vật liệu nhất. Chiều cao hộp là 8 cm, các kích thước khác là (x) (cm), (y) (cm) với (x > 0) và (y > 0). a) Chứng tỏ rằng (y = frac{{100}}{x}). b) Tìm diện tích toàn phần (Sleft( x right)) của chiếc hộp theo (x). c) Khảo sát hàm số (Sleft( x right)) trên khoảng (left( {0; + infty } right)). d) Tìm kích thước của hộp để tiết kiệm vật liệu nhất. (Làm tròn kết quả đến hàng
×