SGK Toán 12 - Cánh diều
Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian - Toán 12 Cánh diều
Lý thuyết Phương trình mặt cầu Toán 12 Cánh Diều
1. Định nghĩa mặt cầu
Lý thuyết Phương trình đường thẳng Toán 12 Cánh Diều
1. Phương trình đường thẳng
a) Vecto chỉ phương của đường thẳng
Lý thuyết Phương trình mặt phẳng Toán 12 Cánh Diều
1. Vecto pháp tuyến, cặp vecto chỉ phương của mặt phẳng
a) Vecto pháp tuyến
Giải bài tập 1 trang 87 SGK Toán 12 tập 2 - Cánh diều
Mặt phẳng (P): có một vectơ pháp tuyến là:
A. \(\overrightarrow {{n_1}} = \left( {3;4;5} \right)\).
B. \(\overrightarrow {{n_2}} = \left( {3; - 4;5} \right)\).
C. \(\overrightarrow {{n_3}} = \left( { - 3;4;5} \right)\).
D. \(\overrightarrow {{n_4}} = \left( {3;4; - 5} \right)\).
Giải mục 1 trang 81, 82 SGK Toán 12 tập 2 - Cánh diều
Hình 38 mô tả một mặt cầu trong không gian.
Trong không gian với hệ tọa độ Oxyz, phương trình của mặt cầu được lập như thế nào?
Giải mục 1 trang 65, 66, 67, 68, 69 SGK Toán 12 tập 2 - Cánh diều
Cho hình hộp ABCD.A’B’C’D’ (Hình 23). Giá của vectơ (overrightarrow {A'C'} ) và đường thẳng AC có vị trí tương đối như thế nào?
Giải mục 1 trang 50, 51, 52 SGK Toán 12 tập 2 - Cánh diều
Vecto pháp tuyến. Cặp vecto chỉ phương của mặt phẳng
Giải bài tập 2 trang 87 SGK Toán 12 tập 2 - Cánh diều
Đường thẳng \(d:\frac{{x - 2}}{3} = \frac{{y - 3}}{6} = \frac{{z - 1}}{9}\) có một vectơ chỉ phương là:
A. \(\overrightarrow {{u_1}} = \left( {2;3;1} \right)\).
B. \(\overrightarrow {{u_2}} = \left( {6;3;9} \right)\).
C. \(\overrightarrow {{u_3}} = \left( {3;9;6} \right)\).
D. \(\overrightarrow {{u_4}} = \left( {1;2;3} \right)\).
Giải mục 2 trang 82, 83 SGK Toán 12 tập 2 - Cánh diều
Cho hai điểm M(x; y; z) và I(a; b; c).
a) Viết công thức tính khoảng cách giữa hai điểm M và I.
b) Nêu mối liên hệ giữa x, y và z để M nằm trên mặt cầu tâm I bán kính R.
Giải mục 2 trang 69, 70, 71 SGK Toán 12 tập 2 - Cánh diều
Cho hai đường thẳng phân biệt \({\Delta _1},{\Delta _2}\) lần lượt đi qua các điểm \({M_1},{M_2}\) và tương ứng có vectơ chỉ phương là \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) .
a) Giả sử \({\Delta _1}\) song song với \({\Delta _2}\) (Hình 25). Các cặp vectơ sau có cùng phương hay không: \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \); \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{M_1}{M_2}} \)?
Giải bài tập 3 trang 87 SGK Toán 12 tập 2 - Cánh diều
a) Mặt cầu (S): có bán kính là:
A. 10.
B. 11.
C. 12.
D. 13.
b) Tọa độ tâm của mặt cầu (S): \({\left( {x - 5} \right)^2} + {\left( {y + 6} \right)^2} + {\left( {z - 7} \right)^2} = 8\) là:
A. (-5; 6; 7).
B. (5; 6; -7).
C. (5; -6; 7).
D. (-5; 6; 7).
Giải mục 3 trang 85 SGK Toán 12 tập 2 - Cánh diều
Trong Ví dụ 6, giả sử người đi biển di chuyển theo đường thẳng từ vị trí I(21; 35; 50) đến vị trí D (5 121; 658; 0). Tìm vị trí cuối cùng trên đoạn ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng.
Giải mục 3 trang 71, 72, 73, 74, 75 SGK Toán 12 tập 2 - Cánh diều
Cho hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\). Lấy hai đường thẳng \({\Delta _1},{\Delta _2}\) sao cho \({\Delta _1} \bot \left( {{P_1}} \right),\) \({\Delta _2} \bot \left( {{P_2}} \right)\) (Hình 31).
Giải bài tập 4 trang 87 SGK Toán 12 tập 2 - Cánh diều
Khoảng cách từ điểm M(a; b; c) đến mặt phẳng \(x - a - b - c = 0\) là:
A. \(\left| {a + b} \right|\).
B. \(\left| {b + c} \right|\).
C. \(\left| {c + a} \right|\).
D. \(\frac{{\left| {b + c} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\).
Giải bài tập 1 trang 85 SGK Toán 12 tập 2 - Cánh diều
Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là:
A. \(\left( { - 2; - 3;4} \right)\).
B. \(\left( {2;3; - 4} \right)\).
C. \(\left( {2; - 3; - 4} \right)\).
D. \(\left( {2; - 3;4} \right)\).
Giải bài tập 1 trang 78 SGK Toán 12 tập 2 - Cánh diều
Đường thẳng đi qua điểm A(3; 2; 5) nhận \(\overrightarrow u = \left( { - 2;8; - 7} \right)\) làm vectơ chỉ phương có phương trình tham số là:
Giải bài tập 5 trang 87 SGK Toán 12 tập 2 - Cánh diều
Cho bốn điểm A(0; 1; 3), B(-1; 0; 5), C(2; 0; 2) và D(1; 1; -2).
a) Tìm tọa độ của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \) và một vectơ vuông góc với cả hai vectơ đó.
b) Viết phương trình tham số và phương trình chính tắc của đường thẳng AB và AC.
c) Viết phương trình tổng quát của mặt phẳng (ABC).
d) Chứng minh rằng bốn điểm A, B, C, D không đồng phẳng.
e) Tính khoảng cách từ điểm D đến mặt phẳng (ABC).
Giải bài tập 2 trang 85 SGK Toán 12 tập 2 - Cánh diều
Bán kính của mặt cầu (S): \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) có tọa độ là
A. 3.
B. 9.
C. 81.
D. \(\sqrt 3 \).
Giải bài tập 2 trang 78 SGK Toán 12 tập 2 - Cánh diều
Đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là:
Giải bài tập 6 trang 87 SGK Toán 12 tập 2 - Cánh diều
Viết phương trình tổng quát của mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm M(-3; 1; 4) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {2; - 4;1} \right)\);
b) (P) đi qua điểm N(2; -1; 5) và có cặp vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( {1; - 3; - 2} \right)\) và \(\overrightarrow {{u_2}} = \left( { - 3;4;1} \right)\);
c) (P) đi qua điểm I(4; 0; -7) và song song với mặt phẳng \(\left( Q \right):2x + y - z - 3 = 0\);
d) (P) đi qua điểm K(-4; 9; 2)
Giải bài tập 3 trang 86 SGK Toán 12 tập 2 - Cánh diều
Mặt cầu (S) tâm I(-5; -2; 3) bán kính 4 có phương trình là:
A. \({\left( {x - 5} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 4\).
B. \({\left( {x - 5} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 16\).
C. \({\left( {x + 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 4\).
D. \({\left( {x + 5} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 16\).
Giải bài tập 3 trang 78 SGK Toán 12 tập 2 - Cánh diều
Mặt phẳng \(\left( P \right):x - 2 = 0\) vuông góc với mặt phẳng nào sau đây?
A. \(\left( {{P_1}} \right):x + 2 = 0\).
B. \(\left( {{P_2}} \right):x + y - 2 = 0\).
C. \(\left( {{P_3}} \right):z - 2 = 0\).
D. \(\left( {{P_4}} \right):x + z - 2 = 0\).
Giải bài tập 7 trang 88 SGK Toán 12 tập 2 - Cánh diều
Viết phương trình của mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(4; -2; 1) và bán kính \(R = 9\);
b) (S) có tâm I(3; 2; 0) và đi qua điểm M(2; 4; -1);
c) (S) có đường kính là đoạn thẳng AB với A(1; 2; 0) và B(-1; 0; 4).
Giải bài tập 4 trang 86 SGK Toán 12 tập 2 - Cánh diều
Cho mặt cầu có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 7} \right)^2} = 100\).
a) Xác định tâm và bán kính của mặt cầu.
b) Mỗi điểm A(1; 1; 1), B(9; 4; 7), C(9; 9; 10) nằm trong, nằm ngoài hay nằm trên mặt cầu đó?
Giải bài tập 4 trang 78 SGK Toán 12 tập 2 - Cánh diều
Cho đường thẳng \(\Delta \) có phương trình tham số \(\left\{ \begin{array}{l}x = 1 - t\\y = 3 + 2t\\z = - 1 + 3t\end{array} \right.\)(t là tham số).
a) Chỉ ra tọa độ hai điểm thuộc đường thẳng \(\Delta \).
b) Điểm nào trong các điểm \(C\left( {6; - 7; - 16} \right),D\left( { - 3;11; - 11} \right)\) thuộc đường thẳng \(\Delta \)?
Giải bài tập 8 trang 88 SGK Toán 12 tập 2 - Cánh diều
Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau:
a) \({\Delta _1}:\frac{{x + 1}}{3} = \frac{{y + 5}}{4} = \frac{{z - 5}}{{ - 1}}\) và \({\Delta _2}:\frac{{x + 13}}{5} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 17}}{7}\);
b) \({\Delta _1}:\frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{{z - 4}}{{ - 7}}\) và \({\Delta _2}:\frac{{x + 10}}{{ - 6}} = \frac{{y + 19}}{{ - 9}} = \frac{{z - 45}}{{21}}\);
c) \({\Delta _1}:\frac{{x + 3}}{1} = \frac{{y - 5}}{1
Giải bài tập 5 trang 86 SGK Toán 12 tập 2 - Cánh diều
Cho phương trình \({x^2} + {y^2} + {z^2} - 4x - 2y - 10z + 2 = 0\). Chứng minh rằng phương trình trên là phương trình của một mặt cầu. Xác định tâm và bán kính của mặt cầu đó.
Giải bài tập 5 trang 78, 79 SGK Toán 12 tập 2 - Cánh diều
Viết phương trình tham số và phương trình chính tắc của đường thẳng \(\Delta \) trong mỗi trường hợp sau:
a) \(\Delta \) đi qua điểm \(A\left( { - 1;3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\).
b) \(\Delta \) đi qua hai điểm \(M\left( {2; - 1;3} \right)\) và \(N\left( {3;0;4} \right)\).
Giải bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).
Giải bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\);
b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2);
c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).
Giải bài tập 6 trang 79 SGK Toán 12 tập 2 - Cánh diều
Xác định vị trí tương đối của hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau:
a) \({\Delta _1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{{z - 3}}{{ - 1}}\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 11 - 6t\\y = - 6 - 3t\\z = 10 + 3t\end{array} \right.\) (t là tham số);
b) \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 + 4t\\z = 3 + 5t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 3}}{1} = \frac{{y + 6}}{2} = \frac{{z - 15}}{{ - 3}}\)
Giải bài tập 10 trang 88 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) (làm tròn kết quả đến hàng đơn vị của độ), biết \(\Delta :\left\{ \begin{array}{l}x = - 1 + 2t\\y = 4 - 3t\\z = - 1 + 4t\end{array} \right.\) (t là tham số) và \(\left( P \right):x + y + z + 3 = 0\).
Giải bài tập 7 trang 86 SGK Toán 12 tập 2 - Cánh diều
Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian (Hình 42). Ta có thể mô phỏng cơ chế hoạt động của hệ thống GPS trong không gian như sau: Trong cùng một thời điểm, toạ độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh cho trước, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian
Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):
a) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + {t_1}\\y = 4 + \sqrt 3 {t_1}\\z = 0\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 {t_2}\\y = 4 + {t_2}\\z = 5\end{array} \right.\) (\({t_1},{t_2}\) là tham số);
b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\\z = 4 - t\end{array} \right.\) (t là tham số) và \({\Del
Giải bài tập 11 trang 88 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):2x + 2y - z - 1 = 0\) và \(\left( {{P_2}} \right):x - 2y - 2z + 3 = 0\).
Giải bài tập 8 trang 79 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa đường thẳng \(\Delta \) và mặt phẳng (P) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):
a) \(\Delta :\left\{ \begin{array}{l}x = 1 + \sqrt 3 t\\y = 2\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):\sqrt 3 x + z - 2 = 0\);
b) \(\Delta :\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 3 + t\end{array} \right.\) (t là tham số) và \(\left( P \right):x + y + z - 4 = 0\).
Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0.
a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D').
b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.
c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD).
d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).
Giải bài tập 9 trang 79 SGK Toán 12 tập 2 - Cánh diều
Tính góc giữa hai mặt phẳng \(\left( {{P_1}} \right):x + y + 2z - 1 = 0\) và \(\left( {{P_2}} \right):2x - y + z - 2 = 0\).
Giải bài tập 13 trang 89 SGK Toán 12 tập 2 - Cánh diều
Hình 43 minh hoạ đường bay của một chiếc trực thăng H cất cánh từ một sân bay. Xét hệ trục toạ độ Oxyz có gốc toạ độ O là chân tháp điều khiển của sân bay; trục Ox là hướng đông (Ð), trục Oy là hướng bắc (B) và trục Oz là trục thẳng đứng, đơn vị trên mỗi trục là kilômét.
Giải bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là (Sleft( {0;0;frac{{asqrt 3 }}{2}} right),Aleft( {frac{a}{2};0;0} right),Bleft( { - frac{a}{2};0;0} right),Cleft( { - frac{a}{2};a;0} right),Dleft( {frac{a}{2};a;0} right)) với (a > 0) (Hình 36).
Giải bài tập 14 trang 89 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \(\overrightarrow u = \left( {91;75;0} \right)\) hướng về đài kiểm soát không lưu (Hình 44).
Giải bài tập 11 trang 80 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là kilômét), một máy bay đang ở vị trí \(A\left( {3,5; - 2;0,4} \right)\) và sẽ hạ cánh ở vị trí \[B\left( {3,5;5,5;0} \right)\] trên đường băng EG (Hình 37).
Trả lời câu hỏi trang 52 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;-1;2) và có vecto pháp tuyến là (overrightarrow n = (1;2;3))
Giả sử M(x;y;z) là một điểm tùy ý thuộc mặt phẳng (P) (Hình 7)
a) Tính tích vô hướng (overrightarrow n .overrightarrow {AM} ) theo x, y, z
b) Tọa độ (x;y;z) của điểm M có thỏa mãn phương trình: x + 2y + 3z – 5 = 0 hay không?
Giải mục 3 trang 54,55,56 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình tổng quát của mặt phẳng biết một số điều kiện
Giải mục 4 trang 57,58,59 SGK Toán 12 tập 2 - Cánh diều
Điều kiện song song, vuông góc của hai mặt phẳng
Trả lời câu hỏi trang 59 SGK Toán 12 tập 2 - Cánh diều
Cho mặt phẳng (P) có phương trình tổng quát là Ax + By + Cz + D = 0 với \(\overrightarrow n = (A;B;C)\) là vecto pháp tuyến. Cho điểm \({M_0}(2;3;4)\). Gọi \(H({x_H};{y_H};{z_H})\) là hình chiếu vuông góc của điểm \({M_0}\) trên mặt phẳng (P) (Hình 16)
a) Tính tọa độ của \(\overrightarrow {H{M_0}} \) theo \({x_H},{y_H},{z_H}\)
b) Nêu nhận xét về phương của hai vecto \(\overrightarrow n = (A;B;C)\), \(\overrightarrow {H{M_0}} \). Từ đó, hãy suy ra rằng \(\left| {\overrightarrow n .\overrighta
Giải bài tập 1 trang 63 SGK Toán 12 tập 2 - Cánh diều
Phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
A. ( - {x^2} + 2y + 3z + 4 = 0)
B. (2x - {y^2} + z + 5 = 0)
C. (x + y - {z^2} + 6 = 0)
D. (3x - 4y - 5z + 1 = 0)
Giải bài tập 2 trang 63 SGK Toán 12 tập 2 - Cánh diều
Mặt phẳng \(x + 2y - 3z + 4 = 0\) có một vecto pháp tuyến là:
A. \(\overrightarrow {{n_1}} = (2; - 3;4)\)
B. \(\overrightarrow {{n_2}} = (1;2;3)\)
C. \(\overrightarrow {{n_3}} = (1;2; - 3)\)
D. \(\overrightarrow {{n_4}} = (1;2;4)\)
Giải bài tập 3 trang 63 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt phẳng (P) đi qua điểm I(3;-4;5) và nhận \(\overrightarrow n \) làm vecto pháp tuyến
Giải bài tập 4 trang 63 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt phẳng (P) đi qua điểm K(-1;2;3) và nhận hai vecto \(\overrightarrow u = (1;2;3),\overrightarrow v = (4;5;6)\) làm cặp vecto chỉ phương
Giải bài tập 5 trang 63 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt phẳng (P) đi qua:
a) Điểm I(3;-4;1) và vuông góc với trục Ox
b) Điểm K(-2;4;-1) và song song với mặt phẳng (Ozx)
c) Điểm K(-2;4;-1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0
Giải bài tập 6 trang 63 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt phẳng (P) đi qua ba điểm A(1;1;1), B(0;4;0), C(2;2;0)
Giải bài tập 7 trang 63 SGK Toán 12 tập 2 - Cánh diều
Lập phương trình mặt phẳng theo đoạn chắn của mặt phẳng (P), biết (P) đi qua ba điểm A(5;0;0), B(0;3;0), C(0;0;6)
Giải bài tập 8 trang 64 SGK Toán 12 tập 2 - Cánh diều
Cho hai mặt phẳng (({P_1}):4x - y - z + 1 = 0), (({P_2}):8x - 2y - 2x + 1 = 0)
a) Chứng minh rằng (({P_1})//({P_2}))
b) Tính khoảng cách giữa hai mặt phẳng song song (({P_1}),({P_2}))
Giải bài tập 9 trang 64 SGK Toán 12 tập 2 - Cánh diều
a) Cho hai mặt phẳng \(({P_1}):x + 2y + 3z + 4 = 0,({P_2}):x + y - z + 5 = 0\). Chứng minh rằng \(({P_1}) \bot ({P_2})\)
b) Cho mặt phẳng \((P):x - 2y - 2z + 1 = 0\) và điểm M(1;1;-6). Tính khoảng cách từ điểm M đến mặt phẳng (P)
Giải bài tập 10 trang 64 SGK Toán 12 tập 2 - Cánh diều
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.OBCD có đáy là hình chữ nhật và các điểm O(0;0;0), B(2;0;0), D(0;3;0), S(0;0;4) (hình 19)
a) Tìm tọa độ điểm C
b) Viết phương trình mặt phẳng (SBD)
c) Tính khoảng cách từ điểm C đến mặt phẳng (SBD)
Giải bài tập 11 trang 64 SGK Toán 12 tập 2 - Cánh diều
Hình 20 minh họa hình ảnh một tòa nhà trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là mét). Biết A(50;0;0), D(0;20;0), B(4k;3k;2k) với k > 0 và mặt phẳng (CBEF) có phương trình z = 3
a) Tìm tọa độ điểm B
b) Lập phương trình mặt phẳng (AOBC)
c) Lập phương trình mặt phẳng (DOBE)
d) Chỉ ra một vecto pháp tuyến của mỗi mặt phẳng (AOBC) và (DOBE)
Giải bài tập 12 trang 64 SGK Toán 12 tập 2 - Cánh diều
Hình 21 minh hoạt một khu nhà đang xây dựng được gắn hệ trục tọa độ Oxyz (đơn vị trên các trục là mét). Mỗi cột bê tông có dạng hình lăng trụ tứ giác đều và tâm của mặt đáy trên lần lượt các điểm A(2;1;3), B(4;3;3), C(6;3;2,5), D(4;0;2,8)
a) Viết phương trình mặt phẳng (ABC)
b) Bốn điểm A, B, C, D có đồng phẳng không?