Trò chuyện
Bật thông báo
Click Tắt thông báo để không nhận tin nhắn cho đến khi bạn Bật thông báo
Tôi:
Biểu tượng cảm xúc
😃
☂️
🐱

SBT Toán 12 - Cánh diều

Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - SBT Toán 12 Cánh diều

Giải bài 83 trang 38 sách bài tập toán 12 - Cánh diều
Cho hàm số (fleft( x right)) xác định trên (mathbb{R}) và có bảng xét dấu đạo hàm (f'left( x right)) như sau: Khẳng định nào dưới đây đúng? A. (fleft( { - 6} right) > fleft( { - 5} right)). B. (fleft( 1 right) > fleft( 2 right)). C. (fleft( 5 right) < fleft( 7 right)). D. (fleft( { - 3} right) > fleft( { - 1} right)).
Giải bài 68 trang 34 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số \(y = 4{x^3} - 6x + 1\) là đường cong nào trong các đường cong sau?
Giải bài 48 trang 23 sách bài tập toán 12 - Cánh diều
Tiệm cận đứng của đồ thị hàm số (y = frac{{3{rm{x}} + 1}}{{x - 2}}) là đường thẳng: A. (x = 2). B. (x = - frac{1}{3}). C. (y = 3). D. (y = frac{1}{3}).
Giải bài 26 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = sqrt {{x^2} + 4} ) bằng: A. 2. B. 4. C. 0. D. 1.
Giải bài 1 trang 10 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) có bảng xét dấu của đạo hàm (f'left( x right)) như sau
Giải bài 84 trang 39 sách bài tập toán 12 - Cánh diều
Kết luận nào sau đây là đúng đối với hàm số (y = {left( {frac{1}{2}} right)^{{x^2}}})? A. Hàm số đồng biến trên (mathbb{R}). B. Hàm số nghịch biến trên (mathbb{R}). C. Hàm số đồng biến trên khoảng (left( { - infty ;0} right)) và nghịch biến trên khoảng (left( {0; + infty } right)). D. Hàm số nghịch biến trên khoảng (left( { - infty ;0} right)) và đồng biến trên khoảng (left( {0; + infty } right)).
Giải bài 69 trang 34 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số \(y = - {x^3} - x + 2\) là đường cong nào trong các đường cong sau?
Giải bài 49 trang 23 sách bài tập toán 12 - Cánh diều
Tiệm cận ngang của đồ thị hàm số (y = frac{{5{rm{x}} - 2}}{{x + 3}}) là đường thẳng: A. (x = - 3). B. (x = 5). C. (y = - 3). D. (y = 5).
Giải bài 27 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = frac{{2{rm{x}} - 1}}{{x - 2}}) trên nửa khoảng (left[ { - 3;2} right)) bằng: A. ( - frac{7}{5}). B. 7. C. (frac{7}{5}). D. ‒7.
Giải bài 2 trang 10 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Giải bài 85 trang 39 sách bài tập toán 12 - Cánh diều
Trong các hàm số sau, hàm số nghịch biến trên (mathbb{R}) là: A. (y = {e^{ - x + 2}}). B. (y = {log _{frac{1}{2}}}left( {{x^2} + 1} right)). C. (y = - {x^3} + 2{{rm{x}}^2} + 1). D. (y = - x + 1 + frac{1}{x}).
Giải bài 70 trang 35 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số \(y = \frac{{2{\rm{x}}}}{{x + 1}}\) là đường cong nào trong các đường cong sau?
Giải bài 50 trang 23 sách bài tập toán 12 - Cánh diều
Tiệm cận đứng, tiệm cận ngang của đồ thị hàm số \(y = \frac{{2{\rm{x}} - 7}}{{6 - 3{\rm{x}}}}\) là: A. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{1}{3}\). B. Tiệm cận đứng là đường thẳng \(x = \frac{7}{2}\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\). C. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = \frac{2}{3}\). D. Tiệm cận đứng là đường thẳng \(x = 2\); tiệm cận ngang là đường thẳng \(y = - \frac{2}{3}\).
Giải bài 28 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = {x^3} - 3{x^2} - 9x + 35) trên đoạn (left[ { - 2;0} right]) bằng: A. 40. B. 8. C. 33. D. 35.
Giải bài 3 trang 10 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) có đạo hàm (f'left( x right) = - xleft( {2x - 5} right),forall x in mathbb{R}). Khẳng định nào dưới đây đúng?
Giải bài 86 trang 39 sách bài tập toán 12 - Cánh diều
Cho hàm số bậc ba \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị là đường cong như Hình 25. Hàm số đã cho đồng biến trên khoảng nào dưới đây? A. \(\left( { - \infty ;3} \right)\). B. \(\left( {1; + \infty } \right)\). C. \(\left( { - 1; + \infty } \right)\). D. \(\left( { - 1;1} \right)\).
Giải bài 71 trang 35 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số (y = frac{{{x^2} + 2{rm{x}} + 2}}{{x + 1}}) là đường cong nào trong các đường cong sau?
Giải bài 51 trang 23 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số nào sau đây nhận đường thẳng (x = - 1) làm tiệm cận đứng? A. (y = frac{{3{rm{x}} - 1}}{{{rm{x}} + 1}}). B. (y = frac{{2{rm{x}} + 1}}{{{rm{x}} - 1}}). C. (y = frac{{ - x + 1}}{{{rm{x}} - 2}}). D. (y = frac{{x + 1}}{{{rm{x}} - 2}}).
Giải bài 29 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = sqrt {5 - 4x} ) trên đoạn (left[ { - 1;1} right]) bằng: A. 9. B. 3. C. 1. D. 0.
Giải bài 4 trang 11 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = - {x^3} + 3{x^2} - 4\). Mệnh đề nào dưới đây là đúng?
Giải bài 87 trang 40 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}) và có bảng biến thiên như sau: Số điểm cực trị của hàm số là: A. 0. B. 1. C. 2. D. 3.
Giải bài 72 trang 36 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 16 là đồ thị của hàm số: A. \(y = - \frac{{{x^3}}}{3} + {x^2} - 4\). B. \(y = {x^3} - 3{{\rm{x}}^2} - 4\). C. \(y = {x^3} + 3{{\rm{x}}^2} - 4\). D. \(y = - {x^3} - 3{{\rm{x}}^2} + 4\).
Giải bài 52 trang 23 sách bài tập toán 12 - Cánh diều
Tiệm cận xiên của đồ thị hàm số (y = 2x - 1 - frac{2}{{x + 1}}) là đường thẳng: A. (y = 2x). B. (y = x + 1). C. (y = 2x - 1). D. (y = - 2x + 1).
Giải bài 30 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. 0. B. ‒2. C. 1. D. ‒5.
Giải bài 5 trang 11 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = frac{x}{{x - 1}}). Mệnh đề nào dưới đây là đúng?
Giải bài 88 trang 40 sách bài tập toán 12 - Cánh diều
Cho hàm số (fleft( x right)) có đạo hàm (f'left( x right) = {x^2}{left( {x + 1} right)^2}left( {x - 1} right)left( {x + 2} right),forall x in mathbb{R}). Điểm cực đại của hàm số đã cho là: A. ‒1. B. ‒2. C. 2. D. 1.
Giải bài 73 trang 36 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 17 là đồ thị của hàm số: A. \(y = \frac{{1 - 2{\rm{x}}}}{{2{\rm{x}} - 4}}\). B. \(y = \frac{{1 - {\rm{x}}}}{{{\rm{x}} - 2}}\). C. \(y = \frac{{1 - {\rm{x}}}}{{2 - x}}\). D. \(y = \frac{{1 - 2{\rm{x}}}}{{x - 1}}\).
Giải bài 53 trang 23 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ 1 right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Tiệm cận đứng của đồ thị hàm số là đường thẳng: A. (x = 1). B. (x = 2). C. (y = 1). D. (y = 2).
Giải bài 31 trang 17 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = frac{{{x^2} - 3{rm{x}}}}{{x + 1}}) trên đoạn (left[ {0;3} right]) bằng: A. 0. B. 1. C. 2. D. 3.
Giải bài 6 trang 11 sách bài tập toán 12 - Cánh diều
Trong các hàm số sau, hàm số đồng biến trên \(\mathbb{R}\) là:
Giải bài 89 trang 40 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = \frac{{a{x^2} + b{\rm{x}} + c}}{{m{\rm{x}} + n}}\) (với \(a,m \ne 0\)) có đồ thị là đường cong như Hình 26. Giá trị cực đại của hàm số là: A. 0. B. ‒1. C. 2. D. 3.
Giải bài 74 trang 36 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 18 là đồ thị của hàm số: A. \(y = \frac{{{x^2} - 2{\rm{x}}}}{{x - 1}}\). B. \(y = \frac{{{x^2} + 2{\rm{x}}}}{{ - x + 1}}\). C. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{2{\rm{x}} - 2}}\). D. \(y = \frac{{ - {x^2} + 2{\rm{x}}}}{{x - 1}}\).
Giải bài 54 trang 24 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 2} \right\}\), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = 2\) và tiệm cận ngang là đường thẳng \(x = - 2\). B. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(y = - 2\) và tiệm cận ngang là đường thẳng \(x = 2\). C. Đồ thị hàm số có tiệm cận đứng là đường thẳng \(x = 2\) và tiệm cận ngang là đường
Giải bài 32 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = x + 1 + frac{1}{{x + 1}}) trên đoạn (left[ {1;2} right]) bằng: A. 2. B. (frac{5}{2}). C. (frac{{10}}{3}). D. ‒2.
Giải bài 7 trang 11 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 4. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Giải bài 90 trang 40 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = frac{{2{rm{x}} + 1}}{{1 - x}}) trên đoạn (left[ {2;3} right]) bằng: A. ‒5. B. ‒2. C. 0. D. 1.
Giải bài 75 trang 36 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) với \(a > 0\) có đồ thị là đường cong ở Hình 19. Mệnh đề nào dưới đây đúng? A. \(b > 0,c < 0,d < 0\). B. \(b > 0,c > 0,d < 0\). C. \(b < 0,c > 0,d < 0\). D. \(b < 0,c < 0,d < 0\).
Giải bài 55 trang 24 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}), liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là đúng? A. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và không có tiệm cận ngang. B. Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 2) và tiệm cận ngang là đường thẳng (y = 3). C. Đồ thị hàm số không có tiệm cận đứng và tiệm cận ngang là đường thẳng (y = - 2). D. Đồ thị hàm
Giải bài 33 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = x + sqrt 2 cos x) trên đoạn (left[ {0;frac{pi }{2}} right]) bằng: A. (sqrt 2 ). B. (sqrt 3 ). C. (frac{pi }{4} + 1). D. (frac{pi }{2}).
Giải bài 9 trang 12 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Điểm cực đại của hàm số đã cho là: A. ‒1. B. 3. C. 2. D. 0.
Giải bài 91 trang 40 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = x + sqrt {1 - {x^2}} ) bằng: A. (sqrt 2 ). B. (sqrt 5 ). C. 1. D. 2.
Giải bài 76 trang 37 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = a{x^3} + b{x^2} + cx + dleft( {a ne 0} right)) có đồ thị là đường cong ở Hình 20. a) (a > 0). b) Đồ thị cắt trục tung tại điểm có tung độ dương. c) Đồ thị hàm số có hai điểm cực trị nằm cùng phía với trục tung. d) (b < 0).
Giải bài 56 trang 25 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) liên tục trên (mathbb{R}) và đồ thị có đường tiệm cận ngang như Hình 10. Hàm số (y = fleft( x right)) có thể là hàm số nào trong các hàm số sau? A. (fleft( x right) = frac{{3{{rm{x}}^2}}}{{{x^2} + x + 1}}). B. (fleft( x right) = frac{{2{{rm{x}}^2}}}{{{x^2} + x + 1}}). C. (fleft( x right) = frac{{{{rm{x}}^2}}}{{{x^2} + x + 1}}). D. (fleft( x right) = frac{{{{rm{x}}^2}}}{{3{x^2} + x + 1}}).
Giải bài 34 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = {e^{{x^3} - 3{rm{x}} + 3}}) trên đoạn (left[ {0;2} right]) bằng: A. ({e^2}). B. ({e^3}). C. ({e^5}). D. (e).
Giải bài 8 trang 11 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) có đạo hàm trên (mathbb{R}) và bảng xét dấu của đạo hàm như sau: Số điểm cực trị của hàm số đã cho là: A. 0. B. 1. C. 2. D. 3.
Giải bài 92 trang 40 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x - 2sin x) trên đoạn (left[ {0;pi } right]) lần lượt là: A. (M = pi ,m = frac{pi }{3} - sqrt 3 ). B. (M = pi ,m = 0). C. (M = pi ,m = frac{pi }{6} - 1). D. (M = pi ,m = frac{{2pi }}{3} - sqrt 3 ).
Giải bài 77 trang 37 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{a{x^2} + bx + c}}{{x + n}}) có đồ thị là đường cong ở Hình 21. a) (n < 0). b) (a > 0). c) (c > 0). d) (b < 0).
Giải bài 57 trang 25 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ 1 \right\}\) và có đồ thị như Hình 11. Các đường tiệm cận của đồ thị hàm số là: A. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = - x\). B. Tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận xiên là đường thẳng \(y = x\). C. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường thẳng \(y = x\). D. Tiệm cận đứng là đường thẳng \(x = 1\) và tiệm cận xiên là đường th
Giải bài 35 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất của hàm số (y = left( {{x^2} - 2} right).{e^{2x}}) trên đoạn (left[ { - 1;2} right]) bằng: A. ( - {e^2}). B. ( - 2{e^2}). C. (2{e^4}). D. (2{e^2}).
Giải bài 10 trang 12 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau: Mệnh đề nào dưới đây đúng? A. Hàm số đạt cực tiểu tại \(x = - 5\). B. Hàm số có giá trị cực đại bằng 0. C. Hàm số đạt cực tiểu tại \(x = 2\). D. Hàm số đạt cực đại tại \(x = 4\).
Giải bài 93 trang 41 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất (M) và giá trị nhỏ nhất (m) của hàm số (y = x.ln {rm{x}}) trên đoạn (left[ {1;{e^2}} right]) bằng: A. (M = 0,m = - frac{1}{e}). B. (M = frac{1}{e},m = 0). C. (M = 2{{rm{e}}^2},m = 0). D. (M = 2{{rm{e}}^2},m = - frac{1}{e}).
Giải bài 78 trang 37 sách bài tập toán 12 - Cánh diều
Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 22. Căn cứ vào đồ thị hàm số: a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số. b) Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên đoạn (left[ { - 1;2} right]) c) Tìm điểm trên đồ thị hàm số có hoành độ bằng 2. d) Tìm điểm trên đồ thị hàm số có tung độ bằng 2. e) Đường thẳng (y = 1) cắt đồ thị hàm số (y = fleft( x right)) tại mấy điểm? g) Với giá trị nào củ
Giải bài 58 trang 25 sách bài tập toán 12 - Cánh diều
Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số (y = frac{{ - 5{rm{x}} + 3}}{x}) là: A. (Ileft( {1; - 5} right)). B. (Ileft( {0; - 5} right)). C. (Ileft( {0;5} right)). D. (Ileft( {1;5} right)).
Giải bài 36 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị lớn nhất của hàm số (y = ln left( {{x^2} + x + 2} right)) trên đoạn (left[ {1;3} right]) bằng: A. (ln 14). B. (ln 12). C. (ln 4). D. (ln 10).
Giải bài 11 trang 12 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {{x^2} - 1} \right)^2}\left( {x - 2} \right),\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là: A. 1. B. 2. C. 3. D. 4.
Giải bài 94 trang 41 sách bài tập toán 12 - Cánh diều
Đồ thị hàm số nào sau đây nhận đường thẳng (y = - 2) làm tiệm cận ngang? A. (y = frac{{2{rm{x}} - 1}}{{ - 1 + x}}). B. (y = frac{{ - x + 1}}{{2{rm{x}} - 1}}). C. (y = frac{{x + 1}}{{x + 2}}). D. (y = frac{{ - 2{rm{x + }}1}}{{x - 3}}).
Giải bài 79 trang 38 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right) = frac{{a{x^2} + bx + c}}{{mx + n}}) (với (a,m ne 0)) có đồ thị là đường cong như Hình 23. Căn cứ vào đồ thị hàm số: a) Tìm khoảng đơn điệu, điểm cực đại, cực tiểu của hàm số. b) Viết phương trình đường tiệm cận đứng, tiệm cận xiên của đồ thị hàm số. c) Phương trình (fleft( x right) = 3) có bao nhiêu nghiệm? d) Tìm công thức xác định hàm số (y = fleft( x right)), biết (m = 1).
Giải bài 59 trang 25 sách bài tập toán 12 - Cánh diều
Số đường tiệm cận của đồ thị hàm số (y = frac{{2{rm{x}}}}{{{x^2} - 4}}) là: A. 1. B. 2. C. 3. D. 0.
Giải bài 37 trang 18 sách bài tập toán 12 - Cánh diều
Giá trị nhỏ nhất (m), giá trị lớn nhất (M) của hàm số (y = xsqrt {4 - {x^2}} ) lần lượt bằng: A. (m = 0,M = 2). B. (m = - 2,M = 2). C. (m = - 2,M = 0). D. (m = 0,M = 4).
Giải bài 12 trang 12 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = 2{x^3} + 3x + 2\). Kết luận nào sau đây là đúng? A. Hàm số có 3 cực trị. B. Hàm số có 2 cực trị. C. Hàm số có 1 cực trị. D. Hàm số không có cực trị.
Giải bài 95 trang 41 sách bài tập toán 12 - Cánh diều
Tiệm cận xiên của đồ thị hàm số (y = frac{{3{{rm{x}}^2} + x - 2}}{{x - 2}}) là đường thẳng: A. (y = - 3{rm{x}} + 7). B. (y = 3{rm{x}} + 7). C. (y = 3{rm{x}} - 7). D. (y = - 3{rm{x}} - 7).
Giải bài 80 trang 38 sách bài tập toán 12 - Cánh diều
Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: a) (y = left( {x - 2} right){left( {x + 1} right)^2}); b) (y = - frac{1}{3}{x^3} - {x^2} + 2); c) (y = 2{{rm{x}}^3} - 3{{rm{x}}^2} + 2{rm{x}} - 1); d) (y = - frac{1}{4}left( {{x^3} - 6{{rm{x}}^2} + 12{rm{x}}} right)).
Giải bài 60 trang 25 sách bài tập toán 12 - Cánh diều
Số đường tiệm cận của đồ thị hàm số (y = frac{{{x^2} - 1}}{{{x^2} + 1}}) là: A. 1. B. 2. C. 3. D. 0.
Giải bài 38 trang 18 sách bài tập toán 12 - Cánh diều
Biết giá trị lớn nhất của hàm số (y = frac{{{{left( {ln x} right)}^2}}}{x}) trên đoạn (left[ {1;{e^3}} right]) là (M = frac{a}{{{e^b}}}), trong đó (a,b) là các số tự nhiên. Khi đó ({a^2} + 2{b^3}) bằng: A. 22. B. 24. C. 32. D. 135.
Giải bài 13 trang 12 sách bài tập toán 12 - Cánh diều
Hàm số \(y = {x^3} - 3{x^2} - 9x - 3\) đạt cực tiểu tại điểm: A. ‒1. B. 3. C. 2. D. ‒30.
Giải bài 96 trang 41 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 27 là đồ thị của hàm số: A. \(y = 2{{\rm{x}}^3} + 2\). B. \(y = {x^3} - {x^2} + 2\). C. \(y = - {x^3} + 3{\rm{x}} + 2\). D. \(y = {x^3} + x + 2\).
Giải bài 81 trang 38 sách bài tập toán 12 - Cánh diều
Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: a) (y = frac{{2{rm{x}} - 1}}{{x + 1}}); b) (y = frac{x}{{x - 2}}); c) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{ - x + 1}}); d) (y = frac{{{x^2} + 2{rm{x}} - 3}}{{x + 2}}).
Giải bài 61 trang 26 sách bài tập toán 12 - Cánh diều
Số đường tiệm cận của đồ thị hàm số (y = - x + 3 - frac{5}{{2x + 1}}) là: A. 1. B. 2. C. 3. D. 4.
Giải bài 39 trang 18 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^2}.ln x). a) (y' = 2{rm{x}}.ln {rm{x}}). b) (y' = 0) khi (x = 1). c) (yleft( {frac{1}{{sqrt e }}} right) = - frac{1}{{2{rm{e}}}}). d) Giá trị nhỏ nhất của hàm số trên đoạn (left[ {frac{1}{e};e} right]) bằng ( - frac{1}{{2{rm{e}}}}).
Giải bài 14 trang 12 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 5. Số điểm cực trị của hàm số đã cho là: A. 2. B. 4. C. 1. D. 3.
Giải bài 97 trang 41 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 28 là đồ thị của hàm số: A. \(y = \frac{{ - 2{\rm{x}} + 1}}{{{\rm{x}} + 1}}\). B. \(y = \frac{{{\rm{x}} + 1}}{{ - x - 2}}\). C. \(y = \frac{{ - {\rm{x}} + 1}}{{x + 2}}\). D. \(y = \frac{{x - 2}}{{x + 2}}\).
Giải bài 82 trang 38 sách bài tập toán 12 - Cánh diều
Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó khi gắn với hệ trục toạ độ (Oxy) được mô phỏng ở Hình 24. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có toạ độ (left( { - 4;1} right)) là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc toạ độ là điểm cực tiểu của đồ thị hàm số. a) Tìm công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn (left[ { - 4;0} right]). b) Khi máy bay cách vị trí hạ cánh theo phương ngang 3
Giải bài 62 trang 26 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{{x^2} - 3}}{{ - x - 1}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = - 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = - 1). c) Đồ thị hàm số có tiệm cận xiên là đường thẳng (y = - x). d) Giao điểm (I) của hai đường tiệm cận của đồ thị hàm số là (Ileft( { - 1;1} right)).
Giải bài 40 trang 19 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Bác Lâm muốn gò một cái thùng bằng tôn dạng hình hộp chữ nhật không nắp có đáy là hình vuông và đựng đầy được 32 lít nước. Gọi độ dài cạnh đáy của thùng là (xleft( {dm} right)), chiều cao của thùng là (hleft( {dm} right)). a) Thể tích của thùng là (V = {x^.}^2.hleft( {d{m^3}} right)). b) Tổng diện tích xung quanh và diện tích đáy của thùng là: (S = 4xh + {x^2}left( {d{m^2}} right)). c) Đạo hàm của hàm số (Sle
Giải bài 15 trang 13 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như Hình 6. Giá trị cực tiểu của hàm số đã cho là: A. 2. B. 1. C. ‒1. D. 0.
Giải bài 98 trang 42 sách bài tập toán 12 - Cánh diều
Đường cong ở Hình 29 là đồ thị của hàm số: A. (y = frac{{{x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). B. (y = frac{{ - {x^2} + 2{rm{x}} + 2}}{{{rm{x}} + 1}}). C. (y = frac{{ - {x^2} + 2{rm{x}} - 2}}{{{rm{x}} - 1}}). D. (y = frac{{ - {x^2} + {rm{x}} - 2}}{{{rm{x}} - 1}}).
Giải bài 63 trang 26 sách bài tập toán 12 - Cánh diều
Tìm tiệm cận đứng, tiệm cận ngang của đồ thị mỗi hàm số sau: a) (y = frac{{x - 1}}{{2{rm{x}} + 3}}); b) (y = - 3 + frac{5}{{x - 4}}); c) (y = frac{{3{rm{x}} - 7}}{{{x^2}}}); d) (y = frac{{ - 2{{rm{x}}^2} + 1}}{{{x^2} - 2{rm{x}} + 1}}).
Giải bài 41 trang 19 sách bài tập toán 12 - Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của mỗi hàm số sau: a) \(y = - \frac{{{x^3}}}{3} - {x^2} + 3{\rm{x}} + 1\) trên khoảng \(\left( {0;3} \right)\); b) \(y = {x^4} - 8{x^2} + 10\) trên khoảng \(\left( { - \sqrt 7 ;\sqrt 7 } \right)\); c) \(y = \frac{{{x^2} - 1}}{{{x^2} + 1}}\); d) \(y = x + \frac{4}{{x - 1}}\) trên khoảng \(\left( { - \infty ;1} \right)\).
Giải bài 16 trang 13 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 7. Số điểm cực trị của hàm số \(y = f\left( x \right)\) là: A. 4. B. 3. C. 2. D. 1.
Giải bài 99 trang 42 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = x.{e^x}). a) (y' = {e^x} + x.{e^x}). b) (y' = 0) khi (x = - 1,x = 0). c) (y' > 0) khi (x in left( { - 1; + infty } right)) và (y' < 0) khi (x in left( { - infty ; - 1} right)). d) Hàm số đạt cực đại tại (x = - 1).
Giải bài 64 trang 26 sách bài tập toán 12 - Cánh diều
Tìm tiệm cận đứng, tiệm cận xiên của đồ thị mỗi hàm số sau: a) (y = 5{rm{x}} - 2 + frac{1}{{x + 3}}); b) (y = - 7{rm{x}} + frac{{x - 1}}{{{x^2}}}); c) (y = frac{{{x^2} + 2{rm{x}}}}{{ - x + 2}}); d) (y = frac{{2{{rm{x}}^2} + 9{rm{x}}}}{{x + 1}});
Giải bài 42 trang 19 sách bài tập toán 12 - Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = 2{x^3} + 3{{\rm{x}}^2} - 12{\rm{x}} + 1\) trên đoạn \(\left[ { - 1;5} \right]\); b) \(y = {\left( {x - \sqrt 2 } \right)^2}.{\left( {x + \sqrt 2 } \right)^2}\) trên đoạn \(\left[ { - \frac{1}{2};2} \right]\); c) \(y = {x^5} - 5{{\rm{x}}^4} + 5{{\rm{x}}^3} + 1\) trên đoạn \(\left[ { - 1;2} \right]\); d) \(y = x + \frac{4}{x}\) trên đoạn \(\left[ {3;4} \right]\); e) \(y = \sqrt {x - 1} + \sqrt {3 - x} \); g) \(y = x\sqrt
Giải bài 17 trang 13 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {x^3} - 3{rm{x}} + 2). a) (y' = 3{{rm{x}}^2} - 3). b) (y' = 0) khi (x = - 1,x = 1). c) (y' > 0) khi (x in left( { - 1;1} right)) và (y' < 0) khi (x in left( { - infty ; - 1} right) cup left( {1; + infty } right)). d) Giá trị cực đại của hàm số là ${{f}_{CĐ}}=0$.
Giải bài 100 trang 42 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = {2^{{x^2} - 1}}). a) (y' = left( {{x^2} - 1} right){.2^{{x^2} - 2}}). b) (y' = 0) khi (x = - 1,x = 1). c) (yleft( { - 2} right) = 8,yleft( { - 1} right) = 1,yleft( 1 right) = 1). d) Trên đoạn (left[ { - 2;1} right]), hàm số đạt giá trị nhỏ nhất bằng 1, giá trị lớn nhất bằng 8.
Giải bài 65 trang 26 sách bài tập toán 12 - Cánh diều
Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} + 5}}{{{x^2} - 4}}); b) (y = frac{{ - {x^2} - 1}}{{4{{rm{x}}^2} + 9}}); c) (y = frac{{3{x^2} + x}}{{1 - x}}).
Giải bài 43 trang 20 sách bài tập toán 12 - Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = \sin 2{\rm{x}} - x\) trên đoạn \(\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\); b) \(y = x + {\cos ^2}x\) trên đoạn \(\left[ {0;\frac{\pi }{4}} \right]\);
Giải bài 18 trang 13 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như Hình 8. a) \(f'\left( x \right) = 0\) khi \(x = 0,x = 1,x = 3\). b) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - \infty ;0} \right)\). c) \(f'\left( x \right) > 0\) khi \(x \in \left( {0;3} \right)\). d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( {0;3} \right)\).
Giải bài 101 trang 42 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = frac{{3{rm{x}} - 2}}{{1 - x}}). a) Đồ thị hàm số có tiệm cận đứng là đường thẳng (x = 1). b) Đồ thị hàm số có tiệm cận ngang là đường thẳng (y = 3). c) Điểm (M) nằm trên đồ thị hàm số có hoành độ ({x_0} ne 1) thì tung độ là ({y_0} = - 3 - frac{1}{{{x_0} - 1}}). d) Tích khoảng cách từ điểm (M) bất kì nằm trên đồ thị hàm số đến hai đường tiệm cận của đồ thị hàm số đó bằng 1.
Giải bài 66 trang 26 sách bài tập toán 12 - Cánh diều
Tốc độ đánh máy trung bình (S) (tính bằng từ trên phút) của một học viên sau (t) tuần học được cho bởi công thức: (Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) với (t > 0). a) Xem (y = Sleft( t right) = frac{{100{t^2}}}{{65 + {t^2}}}) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. b) Nêu nhận xét về tốc độ đánh máy trung bình của học viên đó khi thời gian (t) càng lớn.
Giải bài 44 trang 20 sách bài tập toán 12 - Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của mỗi hàm số sau: a) \(y = {3^x} + {3^{ - x}}\) trên đoạn \(\left[ { - 1;2} \right]\); b) \(y = x.{e^{ - 2{{\rm{x}}^2}}}\) trên đoạn \(\left[ {0;1} \right]\); c) \(y = \ln \left( {{x^2} + 2{\rm{x}} + 3} \right)\) trên đoạn \(\left[ { - 2;3} \right]\); d) \(y = - 3{\rm{x}} + 5 + x\ln {\rm{x}}\) trên đoạn \(\left[ {1;3} \right]\);
Giải bài 19 trang 14 sách bài tập toán 12 - Cánh diều
Tìm các khoảng đơn điệu của mỗi hàm số sau: a) \(y = - \frac{1}{3}{x^3} + {x^2} + 3{\rm{x}} - 1\); b) \(y = {x^3} - 3{x^2} + 3{\rm{x}} - 1\); c) \(y = {x^4} + {x^2} - 2\); d) \(y = - {x^4} + 2{{\rm{x}}^2} - 1\); e) \(y = \frac{{2{\rm{x}} - 3}}{{{\rm{x}} - 4}}\); g) \(y = \frac{{{x^2} + x + 2}}{{x + 2}}\).
Giải bài 102 trang 43 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số bậc ba (y = fleft( x right) = a{x^3} + b{x^2} + cx + d) có đồ thị là đường cong như Hình 30. a) Phương trình (fleft( x right) = 4) có hai nghiệm (x = - 1,x = 2). b) Phương trình (fleft( x right) = - 1) có hai nghiệm. c) Phương trình (fleft( x right) = 2) có ba nghiệm. d) Phương trình (fleft( {fleft( x right)} right) = 4) có sáu nghiệm.
Giải bài 67 trang 26 sách bài tập toán 12 - Cánh diều
Tổng chi phí để sản xuất (x) sản phẩm của một xí nghiệp được tính theo công thức (T = 20x + 100{rm{ }}000) (nghìn đồng). a) Viết công thức tính chi phí trung bình (Cleft( x right)) của 1 sản phẩm khi sản xuất được (x) sản phẩm. b) Xem (y = Cleft( x right)) là một hàm số xác định trên khoảng (left( {0; + infty } right)), hãy tìm tiệm cận ngang của đồ thị hàm số đó. c) Xét tính đơn điệu của hàm số (y = Cleft( x right)) trên khoảng (left( {0; + infty } right)).
Giải bài 45 trang 20 sách bài tập toán 12 - Cánh diều
Nhóm bạn Đức dựng trên một khu đất bằng phẳng một chiếc lều từ một tấm bạt hình vuông có độ dài cạnh 4 m như Hình 9 với hai mép tấm bạt sát mặt đất. Tính khoảng cách \(AB\) để khoảng không gian trong lều là lớn nhất.
Giải bài 20 trang 14 sách bài tập toán 12 - Cánh diều
Tìm điểm cực trị của mỗi hàm số sau: a) \(y = {x^3} - 12{\rm{x}} + 8\); b) \(y = 2{{\rm{x}}^4} - 4{{\rm{x}}^2} - 1\); c) \(y = \frac{{{x^2} - 2{\rm{x}} - 2}}{{x + 1}}\); d) \(y = - x + 1 - \frac{9}{{x - 2}}\)
Giải bài 103 trang 43 sách bài tập toán 12 - Cánh diều
Cho hàm số \(y = f\left( x \right)\) xác định trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\), đồ thị hàm số là đường cong và có bốn đường tiệm cận như Hình 31. Căn cứ vào đồ thị hàm số: a) Viết phương trình đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số. b) Lập bảng biến thiên của hàm số.
Giải bài 46 trang 20 sách bài tập toán 12 - Cánh diều
Nồng độ \(C\) của một loại hoá chất trong máu sau \(t\) giờ tiêm vào cơ thể được cho bởi công thức: \(C\left( t \right) = \frac{{3t}}{{27 + {t^3}}}\) với \(t \ge 0\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Sau khoảng bao nhiêu giờ tiêm thì nồng độ của hoá chất trong máu là cao nhất?
Giải bài 21 trang 14 sách bài tập toán 12 - Cánh diều
Dùng đạo hàm của hàm số, hãy giải thích: a) Hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\) khi \(a > 1\), nghịch biến trên \(\mathbb{R}\) khi \(0 < a < 1\). b) Hàm số \(y = {\log _a}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) khi \(a > 1\), nghịch biến trên khoảng \(\left( {0; + \infty } \right)\) khi \(0 < a < 1\).
Giải bài 104 trang 43 sách bài tập toán 12 - Cánh diều
Cho hàm số (y = fleft( x right)) xác định trên (mathbb{R}backslash left{ { - 2} right}) và có bảng biến thiên như sau: a) Tìm điểm cực đại, cực tiểu; giá trị cực đại, cực tiểu của hàm số. b) Viết phương trình đường tiệm cận đứng của đồ thị hàm số. c) Đồ thị hàm số có đường tiệm cận ngang không? Vì sao? d) Tìm công thức xác định hàm số, biết hàm số (fleft( x right)) có dạng (fleft( x right) = frac{{a{x^2} + b{rm{x}} + c}}{{x + n}})
Giải bài 47 trang 20 sách bài tập toán 12 - Cánh diều
Khối lượng riêng \(S\left( {kg/d{m^3}} \right)\) của nước phụ thuộc vào nhiệt độ \(T\left( {^ \circ C} \right)\) được cho bởi công thức: \(S = \frac{{5,755}}{{{{10}^8}}}{T^3} - \frac{{8,521}}{{{{10}^6}}}{T^2} + \frac{{6,540}}{{{{10}^5}}}T + 0,99987\) với \(0 < T \le 25\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). a) Tính khối lượng riêng của nước ở nhiệt độ \({25^ \circ }C\). b) Ở nhiệt độ nào thì khối lượng riêng của nước là lớn nhất?
Giải bài 22 trang 14 sách bài tập toán 12 - Cánh diều
Chứng minh rằng: a) Hàm số \(y = \sqrt {{x^2} - 4} \) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\). b) Hàm số \(y = \ln \left( {{x^2} + 1} \right)\) nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\). c) Hàm số \(y = {2^{ - {x^2} + 2x}}\) đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
Giải bài 105 trang 43 sách bài tập toán 12 - Cánh diều
Tìm các đường tiệm cận đứng và tiệm cận ngang của đồ thị mỗi hàm số sau: a) (y = frac{{3{rm{x}} - 4}}{{ - 2{rm{x}} + 5}}); b) (y = frac{{3{x^3} + x - 2}}{{{x^3} - 8}}); c) (y = frac{{sqrt {{x^2} + 1} }}{x}).
Giải bài 23 trang 14 sách bài tập toán 12 - Cánh diều
Tìm điểm cực trị của mỗi hàm số sau: a) (y = x.{e^x}); b) (y = {left( {x + 1} right)^2}.{e^{ - x}}); c) (y = {x^2}.ln {rm{x}}); d) (y = frac{x}{{ln {rm{x}}}}).
Giải bài 106 trang 44 sách bài tập toán 12 - Cánh diều
Tìm tiệm cận đứng, tiệm cận ngang và tiệm cận xiên (nếu có) của đồ thị mỗi hàm số sau: a) (y = frac{{ - 3{rm{x}} + 2}}{{{x^3} + 1}}); b) (y = frac{{{x^2} - 1}}{{2{rm{x}} + 1}}); c) (y = frac{x}{{sqrt {{x^2} + 1} }}).
Giải bài 24 trang 14 sách bài tập toán 12 - Cánh diều
Trong một thí nghiệm y học, người ta cấy 1 000 con vi khuẩn vào môi trường dinh dưỡng. Bằng thực nghiệm, người ta xác định được số lượng vi khuẩn thay đổi theo thời gian bởi công thức: \(N\left( t \right) = 1000 + \frac{{100t}}{{100 + {t^2}}}\) trong đó \(t\) là thời gian tính bằng giây \(\left( {t \ge 0} \right)\) (Nguồn: R. Larson and B. Edwards, Calculus 10e, Cengage 2014). Trong khoảng thời gian nào từ lúc nuôi cấy, số lượng vi khuẩn sẽ tăng lên?
Giải bài 107 trang 44 sách bài tập toán 12 - Cánh diều
Tìm giá trị nhỏ nhất và giá trị lớn nhất của mỗi hàm số: a) \(y = {x^3} - 2{{\rm{x}}^2} - 7x + 1\) trên đoạn \(\left[ { - 3;2} \right]\); b) \(y = \frac{{{x^2} + 4{\rm{x}} + 4}}{{{\rm{x}} + 3}}\) trên đoạn \(\left[ { - 1;3} \right]\); c) \(y = \left( {{x^2} - 2x + 2} \right){e^x}\) trên đoạn \(\left[ { - 2;1} \right]\); d) \(y = \ln \sqrt {{x^2} + 1} \) trên đoạn \(\left[ { - \sqrt 3 ;2\sqrt 2 } \right]\); e) \(y = x + \cos 2x\) trên đoạn \(\left[ {\frac{\pi }{4};\frac{\pi }{2}} \right]\).
Giải bài 25 trang 15 sách bài tập toán 12 - Cánh diều
Trong 5 giây đầu tiên, một chất điểm chuyển động theo phương trình \(s\left( t \right) = {t^3} - 6{t^2} + 14t + 1\) trong đó \(t\) tính bằng giây và \(s\) tính bằng mét. Trong khoảng thời gian nào của 5 giây đầu tiên thì vận tốc tức thời của chất điểm tăng lên?
Giải bài 108 trang 44 sách bài tập toán 12 - Cánh diều
Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: a) (y = {x^3} - 6{{rm{x}}^2} + 9x - 2); b) (y = - {x^3} - x); c) (y = frac{{2{rm{x}} - 4}}{{{rm{x}} + 1}}); d) (y = frac{{ - x + 3}}{{{rm{x}} - 2}}); e) (y = frac{{{x^2} - x + 2}}{{{rm{x}} + 1}}); g) (y = frac{{ - {x^2} + 4}}{{2{rm{x}}}}).
Giải bài 109 trang 44 sách bài tập toán 12 - Cánh diều
Từ một miếng bìa có độ dài hai cạnh lần lượt là 0,9 m và 1,5 m như Hình 32. Bạn Minh cắt đi phần tô màu xám và gấp lại để được một hình hộp chữ nhật. Gọi \(V\) là thể tích hình hộp chữ nhật được tạo thành, \(V\) được tính theo \(x\) bởi công thức nào? Tìm \(x\) để hình hộp tạo thành có thể tích lớn nhất.
Giải bài 110 trang 44 sách bài tập toán 12 - Cánh diều
Một nhà in sử dụng các trang giấy hình chữ nhật để in sách. Sau khi để lề trái, lề phải, lề trên và lề dưới theo số liệu được cho ở Hình 33 thì diện tích phần in chữ trên trang sách là 24 inch2. Tính kích thước của trang sách để diện tích giấy cần sử dụng là ít nhất?
Giải bài 111 trang 45 sách bài tập toán 12 - Cánh diều
Một cửa sổ gồm phần dưới là một hình chữ nhật và phần vòm có hình bán nguyệt được mô tả ở Hình 34. Tìm \(x,y\) để diện tích của cửa sổ lớn nhất, biết chu vi của cửa sổ là 5 m.
×